• Title, Summary, Keyword: R(p, q, K) spaces

Search Result 4, Processing Time 0.027 seconds

On the Boundedness of Marcinkiewicz Integrals on Variable Exponent Herz-type Hardy Spaces

  • Heraiz, Rabah
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.2
    • /
    • pp.259-275
    • /
    • 2019
  • The aim of this paper is to prove that Marcinkiewicz integral operators are bounded from ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ to ${\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$ when the parameters ${\alpha}({\cdot})$, $p({\cdot})$ and $q({\cdot})$ satisfies some conditions. Also, we prove the boundedness of ${\mu}$ on variable Herz-type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q({\cdot})}_{p({\cdot})}({\mathbb{R}}^n)$.

BOUNDEDNESS OF THE COMMUTATOR OF THE INTRINSIC SQUARE FUNCTION IN VARIABLE EXPONENT SPACES

  • Wang, Liwei
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.939-962
    • /
    • 2018
  • In this paper, we show that the commutator of the intrinsic square function with BMO symbols is bounded on the variable exponent Lebesgue spaces $L^{p({\cdot})}({\mathbb{R}}^n)$ applying a generalization of the classical Rubio de Francia extrapolation. As a consequence we further establish its boundedness on the variable exponent Morrey spaces $\mathcal{M_{p({\cdot}),u}$, Morrey-Herz spaces $M{\dot{K}}^{{\alpha}({\cdot}),{\lambda}}_{q,p({\cdot})}({\mathbb{R}}^n)$ and Herz type Hardy spaces $H{\dot{K}}^{{\alpha}({\cdot}),q}_{p({\cdot})}({\mathbb{R}}^n)$, where the exponents ${\alpha}({\cdot})$ and $p({\cdot})$ are variable. Observe that, even when ${\alpha}({\cdot}){\equiv}{\alpha}$ is constant, the corresponding main results are completely new.

BOUNDEDNESS FOR FRACTIONAL HARDY-TYPE OPERATOR ON HERZ-MORREY SPACES WITH VARIABLE EXPONENT

  • Wu, Jianglong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.423-435
    • /
    • 2014
  • In this paper, the fractional Hardy-type operator of variable order ${\beta}(x)$ is shown to be bounded from the Herz-Morrey spaces $M\dot{K}^{{\alpha},{\lambda}}_{p_1,q_1({\cdot})}(\mathbb{R}^n)$ with variable exponent $q_1(x)$ into the weighted space $M\dot{K}^{{\alpha},{\lambda}}_{p_2,q_2({\cdot})}(\mathbb{R}^n,{\omega})$, where ${\omega}=(1+|x|)^{-{\gamma}(x)}$ with some ${\gamma}(x)$ > 0 and $1/q_1(x)-1/q_2(x)={\beta}(x)/n$ when $q_1(x)$ is not necessarily constant at infinity. It is assumed that the exponent $q_1(x)$ satisfies the logarithmic continuity condition both locally and at infinity that 1 < $q_1({\infty}){\leq}q_1(x){\leq}(q_1)+$ < ${\infty}(x{\in}\mathbb{R}^n)$.