• Title, Summary, Keyword: Railway Dynamics

Search Result 234, Processing Time 0.034 seconds

Development of the Roller Rig for 1/5 Scaled Half Railway Vehicle to perform Running Stability Test (철도차량 주행안정성 시험용 축소형 반차체 주행시험기 개발)

  • Shin, Yu-Jeong;You, Won-Hee;Hur, Hyun-Moo;Park, Joon-Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.543-550
    • /
    • 2011
  • The development of railway vehicles such as new mechanism of railway vehicle or design parameters of suspension have been used the application of scaled roller rig to the study of railway vehicle dynamics. In this paper, the critical speed was compared between full scale and 1:5 scale of numerical model. And to verify the simulation results, the critical speed was confirmed using the 1:5 scaled roller rig. According to the results, we expect that the developed roller rig will be used in the study for the dynamic characteristics of railway vehicle.

Development of a Wheel/Rail Contact Module for Railway Vehicles (철도차량 차륜/레일 접촉모듈 개발)

  • Han, Hyung-Suk;Hur, Shin;Ha, Sung-Do
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.358-364
    • /
    • 1999
  • A wheel/rail contact module for dynamics analysis of railway vehicles is developed. The developed module is based on non-linear contact and FASTSIM algorithm which calculates contact forces. And the module is incorporated into the general purpose program DADS using user-defined subroutines. The simulation results of this developed program is compared to those of the railway vehicle dynamics analysis program AGEM. Since the module is based on DADS, various simulation environments can be considered.

  • PDF

A Numerical Analysis on the Pressure Field Around KTX Train Using the Standard Framework of CFD Analysis for Railway System (철도시스템 전산유체해석 표준 프레임웍을 이용한 KTX 차량 주변 압력장에 대한 수치해석)

  • Nam, Sung-Won;Cha, Chang-Hwan;Kwon, Hyeok-Bin
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5
    • /
    • pp.511-516
    • /
    • 2006
  • A standard framework of CFD(Computational Fluid dynamics) analysis for railway system has been developed to evaluate the overall aerodynamic performance of railway system and has been adopted to numerical simulation of the pressure field around KTX train. The framework is composed of standard aerodynamic model and standard aerodynamic performance to customize the general CFD solution process reflecting the characteristics of railway system such as various operation mode and performance factors. The results show that the standard framework of CFD analysis for railway system can provide objectivity and consistency to the CFD analysis for railway system and the pressure field around KTX train has been successively solved.

A Computational Efficient General Wheel-Rail Contact Detection Method

  • Pombo Joao;Ambrosio Jorge
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.411-421
    • /
    • 2005
  • The development and implementation of an appropriate methodology for the accurate geometric description of track models is proposed in the framework of multibody dynamics and it includes the representation of the track spatial geometry and its irregularities. The wheel and rail surfaces are parameterized to represent any wheel and rail profiles obtained from direct measurements or design requirements. A fully generic methodology to determine, online during the dynamic simulation, the coordinates of the contact points, even when the most general three dimensional motion of the wheelset with respect to the rails is proposed. This methodology is applied to study specific issues in railway dynamics such as the flange contact problem and lead and lag contact configurations. A formulation for the description of the normal contact forces, which result from the wheel-rail interaction, is also presented. The tangential creep forces and moments that develop in the wheel-rail contact area are evaluated using : Kalker linear theory ; Heuristic force method ; Polach formulation. The methodology is implemented in a general multibody code. The discussion is supported through the application of the methodology to the railway vehicle ML95, used by the Lisbon metro company.

The Development of Program for Time Domain Simulation of Railway Dynamics (철도차량 동역학의 시간영역 시뮬레이션 프로그램 개발)

  • No, Chang-Su
    • 한국기계연구소 소보
    • /
    • /
    • pp.87-97
    • /
    • 1988
  • The algorithm for relation of contact status, track shift, and contact force caused from wheel/rail contact geometry is presented. Grafting this algorithm into a algorithm of general program analyzing mechanical system, the program for time domain simulation of railway vehicle dynamics, called CASOTD, was developed. In addition, as applied example of CASOTD, the dynamic simulation of railway vehicle running on a rail joint and a irregularly alinemented rail is done in this paper.

  • PDF

A Three Dimensional Wheelset Dynamic Analysis considering Wheel-rail Two Point Contact (차륜-레일 2점 접촉을 고려한 3차원 윤축 동역학 해석)

  • Kang, Ju-Seok
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Wheelset dynamic analysis is a key element to determine the degree of accuracy of railway vehicle dynamics. In this study, a three-dimensional wheelset dynamic analysis is presented in such a way that the precise wheel-rail contact analysis in three-dimension is implemented into the dynamic equations of a wheelset. A numerical procedure that can be used for the analysis of a wheelset dynamics when the wheel-rail two point contact occurs in a cornering maneuver is developed. Numerical solutions of the constraint equations and the dynamics equations of a wheelset are achieved by using Runge-Kutta method. The proposed wheelset dynamic analysis is validated by comparison against results obtained from VI-RAIL analysis.

A Study on the Eigenmode Characteristics by Changing Damping Parameters of Secondary Suspension (Damper) on Railway Vehicles (철도차량 이차현가장치 댐퍼 매개변수 변화에 따른 고유모드 특성에 대한 연구)

  • Shin, Yu-Jeong;You, Won-Hee;Park, Joon-Hyuk;Hur, Hyun-Moo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.796-804
    • /
    • 2011
  • Railway vehicles are capable of indicating several types of instability. This phenomenon, which is called hunting motion, is a self excited lateral oscillation that is caused by the running velocity of the vehicle and wheel frail interactive forces. The interactive forces act to change effectively the damping characteristics of railway vehicle systems. This paper will show the impact of instability on the transfer function behavior using damping characteristics of secondary suspension. The vehicle dynamics are modeled using a 17 degree of freedom considering linear wheel/rail contact. The paper deals with certain condition of the damper characteristics that one is about various damping coefficient and another is equipped damper direction.

Design Method of Railway Wheel Profile with Objective Function of Eqivalent Conicity (등가답면구배를 목적함수로 하는 차륜답면형상 설계기법)

  • Hur, Hyun-Moo;You, Won-Hee;Park, Joon-Hyuk;Kim, Min-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.13-19
    • /
    • 2010
  • A design method of railway wheel profile with objective function of equivalent conicity considering wheel dimension constraint, two points contact problem between wheel and rail was proposed. New design method shows good results. New wheel profile generated from optimization process shows better dynamic performance compared with initial profile as the purpose of wheel profile design. And to verify the design method with testing the stability of new wheel profile, we conducted a critical speed test for new wheel profile using scale model applied scaling method of railway vehicle dynamics. The result of critical speed test show good agreement with that of numerical analysis. From the above results, it is seen that the design method with objective function of equivalent conicity is feasible and it could be applied to design new wheel profile efficiently.

A Simplified Dvnamic Model for a Tilting Train Simulator (틸팅 차량 모의장치개발을 위한 단순화된 철도차량 모델링)

  • Kim, Jung-Seok;Song, Young-Soo;Han, Seong-Ho
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.751-755
    • /
    • 2004
  • This paper presents a simplified dynamics of railway vehicle for a tilting train simulator. The tilting train simulator has 6 electric-driven actuators and a visualization system with 1600mm-diameter dome screen. The each system shares the data by ethernet. In order to analyze the dynamics of railway vehicle and transfer the results of the analysis to the other system of the tilting train simulator in realtime base, We assumed the tilting train as a simplified rigid body model with primary and secondary suspensions. The simplified vehicle model has a 17-DOF. Through the running analysis on the tight curve with various radius, we verified the simplified vehicle model.

  • PDF

Verification of bridges Design criteria for Continuous PSC Box Bridge of High Speed Railway Using Field Test (고속철도 연속 PSC Box 교량에 적용한 설계기준의 현장계측에 의한 검증)

  • Kang, Kee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.53-58
    • /
    • 2006
  • The aim of this paper is to verify the dynamics stability of the continuous PSC Box bridges on the high-speed Kyoung-bu railway when a high-sped train runs through it. An experimental study was carried out to investigate the dynamic behaviors of the PSC Box railway bridge, which had ben designed based on dynamic design criteria. As a result, it was determined that PSC Box railway bridges possess enough dynamics stability for use by high-speed trains. According to the result of a field test (dynamics measuring analysis) that was conducted, an application of the natural frequency of train speed and the adjustment of the bridge's span length will allow one to come up with a more economical and suitable bridge design. Furthermore, it was found that the continuous control of the bridge's dynamic behavior and the bridge's maintena nce require the recording of data. The results of this study are very important in evaluating the structural stability of high-speed line bridges.