• Title, Summary, Keyword: Ralstonia solanacearum

Search Result 106, Processing Time 0.036 seconds

Detection of the Causal Agent of Bacterial Wilt, Ralstonia solanacearum in the Seeds of Solanaceae by PCR (가지과 종자에서 Ralstonia solanacearum의 검출을 위한 PCR 방법)

  • Cho, Jung-Hee;Yim, Kyu-Ock;Lee, Hyok-In;Baeg, Ji-Hyun;Cha, Jae-Soon
    • Research in Plant Disease
    • /
    • v.17 no.2
    • /
    • pp.184-190
    • /
    • 2011
  • Ralstonia solanacearum, a causal agent of bacterium wilt is very difficult to control once the disease becomes endemic. Thus, Ralstonia solanacearum is a plant quarantine bacterium in many countries including Korea. In this study, we developed PCR assays, which can detect Ralstonia solanacearum from the Solanaceae seeds. Primers RS-JH-F and RS-JH-R amplified specifically a 401 bp fragment only from Ralstonia solanacearum race 1 and race 3. The nested PCR primers, RS-JH-F-ne and RS-JH-R-ne that were designed inside of 1st PCR amplicon amplified specifically a 131 bp fragment only from Ralstonia solanacearum race 1 and race 3. The primers did not amplify any non-specific DNA from the seed extracts of the Solanaceae including tomato and pepper. When detection sensitivity were compared using the Solanaceae seeds inoculated with target bacteria artificially, the nested PCR method developed in this study 100 times more sensitive than ELISA and selective medium. Therefore, we believe that the PCR assays developed in this work is very useful to detect Ralstonia solanacearum in the Solanaceae seeds.

Occurrence and Biovar Classification of Bacterial Wilt Caused by Ralstonia solanacearum in Eggplant (Solanum melongena) (가지의 Ralstonia solanacearum에 의한 풋마름병 발생과 생리형의 분화)

  • Lim, Yang-Sook;Lee, Mun-Jung;Cheung, Jong-Do;Rew, Young-Hyun;Kim, Byung-Soo
    • Research in Plant Disease
    • /
    • v.14 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • Batcterial wilt caused by Ralstonia solanacearum is one of important and widespread diseases worldwide as well as in Korea. Bacterial wilt disease caused by R. solanacearum has been reported mainly in solanaceous crops including eggplant (Solanum melongena), tomato (Solanum lycopersicum), potato (S. tuberosum), and pepper (Capsicum annuum). A total of 48 strains of R. solanacearum from eggplant were collected during 2005 and 2006. They were confirmed as R. solanacearum by PCR amplification with primer pair flipcF/flipcR resulting in production of 470-bp DNA fragment. The 15 isolates exhibited pathogenicity on eggplant and tomato, but less virulent on pepper than other species. The biovar of collected isolates, which have been reported of five types worldwide, were classified as biovars 3 and 4 by physiological test. Biovar 4 was the dormant type without pathogenicity on eggplant rootstock, whereas biovar 3 had pathogenicity on eggplant rootstocks that is resistant to R. solanacearum, indicating necessity of breeding new rootstock with resistance to R. solanacearum biovar 3

Inactivation of Ralstonia Solanacearum using Filtration-Plasma Process (여과-Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1165-1173
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor in nutrient solution culture, a filtration-DBD (dielectric barrier discharge) plasma reactor was investigated for the Ralstonia solanacearum which causes bacterial wilt in aquiculture. The filtration-DBD plasma reactor system of this study was consisted of filter, plasma reactor, reservoir. The DBD plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the inactivation of R. solanacearum with filter media type in filter reactor ranked in the following order: anthracite > fiber ball > sand > ceramic ball > quartz ceramic. In filtration + plasma process, disinfection effect with the voltage was found to small. In disinfection time of 120 minutes, residual R. solanacearum concentration was 1.17 log (15 CFU/mL). When the continuous disinfection time was 120 minute, disinfection effect was thought to keep the four days. In sporadic operation mode of 30 minutes disinfection - 24 hours break, residual R. solanacearum concentration after five days was 0.3 log (2 CFU/mL). It is considered that most of R. solanacearum has been inactivated substantially.

Detection of Ralstonia solanacearum with Nested PCR and DNA Enzyme-Linked Immunosorbent Assay (Nested PCR과 DNA Enzyme-Linked Immunosorbent Assays를 이용한 Ralstonia solanacearum의 검출)

  • Ko, Young-Jin;Cho, Hong-Bum
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.179-185
    • /
    • 2007
  • In this study, we used the method of guanidin isothiocyanate and boiling with Chelex-100 resin to extract genomic DNA of Ralstonia solanacearum from soil. It is more efficient than general protocols to remove inhibitory compounds in soil and R. solanacearum on. Then, we applied polymerase chain reaction and DNA enzyme-linked immunosorbent assay (ELISA) to identify and detect pathogen. The fliC gene of R. solanacearum was selected for specific detection of pathogen and primer sets were designed. Among the primer sets, two specific and sensitive primer sets, RsolfliC(forward: 5-GAACGCCAACGGTGCGAACT-3 and reverse; 5-GGCGGCCTTCAGGGAGGTC-3, designed by J. $Sch\ddot{o}nfeld$ et al.) and RS_247 (forward: 5-GGCGGTCTGTCGGCRG-3 and reverse; 5-CGGTCGCGTTGGCAAC-3 designed by this study), were designed to perform nested PCR. Nested PCR primer was labeled with biotin for hybridization between nested PCR product and probe to analyze with DNA ELISA.

PCR-based Specific Detection of Ralstonia solanacearum by Amplification of Cytochrome c1 Signal Peptide Sequences

  • Kang, Man-Jung;Lee, Mi-Hee;Shim, Jae-Kyung;Seo, Sang-Tae;Shrestha, Rosemary;Cho, Min-Seok;Hahn, Jang-Ho;Park, Dong-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1765-1771
    • /
    • 2007
  • A polymerase chain reaction (PCR)-based method was developed to detect the DNA of Ralstonia solanacearum, the causal agent of bacterial wilt in various crop plants. One pair of primers (RALSF and RALSR), designed using cytochrome c1 signal peptide sequences specific to R. solanacearum, produced a PCR product of 932 bp from 13 isolates of R. solanacearum from several countries. The primer specificity was then tested using DNA from 21 isolates of Ralstonia, Pseudomonas, Burkholderia, Xanthomonas, and Fusarium oxysporum f. sp. dianthi. The specificity of the cytochrome c1 signal peptide sequences in R. solanacearum was further confirmed by a DNA-dot blot analysis. Moreover, the primer pair was able to detect the pathogen in artificially inoculated soil and tomato plants. Therefore, the present results indicate that the primer pair can be effectively used for the detection of R. solanacearum in soil and host plants.

A Study on the Ralstonia Solanacearum Inactivation using Improved Plasma Process (개선된 플라즈마 공정을 이용한 Ralstonia Solanacearum 불활성화에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 2014
  • Effect of improvement of the dielectric barrier discharge (DBD) plasma system on the inactivation performance of bacteria were investigated. The improvement of plasma reactor was performed by combination with the basic plasma reactor and UV process or combination with the basic plasma reactor and circulation system which was equipped with gas-liquid mixer. Experimental results showed that tailing effect was appeared after the exponential decrease in basic plasma reactor. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of basic plasma process and UV process. The application of gas-liquid mixing device on the basic plasma reactor reduced inactivation time and led to complete sterilization. The effect existence of gas-liquid mixing device, voltage, air flow rate (1 ~ 5 L/min), water circulation rate (2.8 ~ 9.4 L/min) in gas-liquid mixing plasma, plasma voltage and UV power of gas-liquid mixing plasma+UV process were evaluated. The optimum air flow rate, water circulation rate, voltage of gas-liquid mixing system were 3 L/min, 3.5 L/min and 60 V, respectively. There was no enhancement effect on the Ralstonia Solanacearum inactivation with combination of gas-liquid mixing plasma and UV process.

Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea (고추에서 분리된 Ralstonia solanacearum 계통의 생리, 생화학 및 유전적 특성)

  • Lee, Young Kee;Kang, Hee Wan
    • Research in Plant Disease
    • /
    • v.19 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Totally sixty three bacteria were isolated from lower stems showing symptoms of bacterial wilt on pepper plants in 14 counties of 7 provinces, Korea. The isolates showed strong pathogenicity on red pepper (cv. Daewang) and tomato (cv. Seogwang) seedlings. All virulent bacteria were identified as Ralstonia solanacearum based on colony types, physiological and biochemical tests and polymerase chain reaction (PCR). All R. solanacearum isolates from peppers were race 1. The bacterial isolates consisted of biovar 3 (27%) and biovar 4 (73%). Based on polymorphic PCR bands generated by repetitive sequence (rep-PCR), the 63 R. solanacearum isolates were divided into 12 groups at 70% similarity level. These results will be used as basic materials for resistant breeding program and efficient control against bacterial wilt disease of pepper.

Genetic Diversity of Ralstonia solanacearum Strains Isolated from Pepper and Tomato Plants in Korea (우리나라에 분포하는 고추와 토마토 풋마름병균(Ralstonia solanacearum) 계통들의 유전적 다양성)

  • Seo, Sang-Tae;Park, Jong-Han;Han, Kyoung-Suk;Cheong, Seung-Ryong;Lee, Seung-Don
    • Research in Plant Disease
    • /
    • v.13 no.1
    • /
    • pp.24-29
    • /
    • 2007
  • A total of 35 strains of Ralstonia solanacearum isolated from wilted pepper and tomato plants in Korea were analyzed for their genetic diversity by bacteriological, pathological and molecular biological approaches. All the strains were identified as R. solanacearum biovar 4 on the basis of physiological and biochemical tests, and species-specific PCR primers. Pathogenicity of the strains was confirmed by inoculating on 4-week-old pepper and tomato seedlings. Using cluster analysis based on repetitive sequence-based polymerase chain reaction (rep-PCR) genomic fingerprints, R. solanacearum strains isolated from pepper and tomato in Korea divided into 6 groups showing a high degree of genetic diversity at 55% similarity level. The genetic diversify of strains was not significantly correlated with their geographic origins and host plants.

First Report of Bacterial Wilt Caused by Ralstonia solanacearum Biovar 2 Race 1 on Tomato in Egypt

  • Seleim, Mohamed A.A.;Abo-Elyousr, Kamal A.M.;Abd-El-Moneem, Kenawy M.;Saead, Farag A.
    • The Plant Pathology Journal
    • /
    • v.30 no.3
    • /
    • pp.299-303
    • /
    • 2014
  • This study aims to isolate and identify the causal pathogen of tomato bacterial wilt in Egypt. In 2008, tomato plants showing typical symptoms of bacterial wilt disease with no foliar yellowing were observed in Minia, Assiut and Sohag governorates, Egypt. When cut stems of symptomatic plants were submerged in water, whitish ooze was evident and longitudinal sections showed a brown discoloration in the vascular tissues. Bacteria were isolated on triphenyl tetrazolium chloride medium and fifteen isolates shown typical morphological and cultural characteristics were confirmed as Ralstonia solanacearum biovar 2 race 1. Pathogenicity tests showed that all isolates proved to be pathogenic to tomato plants, varied from 52 to 97% wilting. This is the first report of R. solanacearum biovar 2 race 1 causing bacterial wilt in tomato crop in Egypt.

Inactivation of Ralstonia Solanacearum Using Aquatic Plasma Process (수중 Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화)

  • Back, Sang-Eun;Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.7
    • /
    • pp.797-804
    • /
    • 2012
  • A dielectric barrier discharge (DBD) plasma reactor was investigated for the inactivation of Ralstonia Solanacearum which causes bacterial wilt in aquiculture. The DBD plasma reactor of this study was divided into power supply unit, gas supply unit and plasma reactor. The plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the optimum 1st voltage, 2nd voltage, air flow rate and pH were for 100 V (1st voltage), 15 kV (2nd voltage), 4 L/min, and pH 3, respectively. At a low 1st voltage, shoulder and tailing off phenomena was observed. The shoulder phenomenon was decreased as the increase of 1st voltage. R. Solanacearum disinfection in the lower air flow rate was showed shoulder and tailing off phenomenon because the active species generated less. Under optimum condition, shoulder and tailing off phenomenon was reduced. When the 2nd voltage was less than 7.5 kV, tailing off phenomenon was observed and this was not vanishes even though the increase of the disinfection time. The inactivation efficiency increased as the increase of air flow rate, however, the efficiency decreased when the air flow rate was above 4 L/min. R. Solanacearum disinfection at pH 3 showed somewhat higher than in pH 11. The pH effect of R. Solanacearum deactivation is less than the impact on other factor.