• Title, Summary, Keyword: Rhodamine B

Search Result 225, Processing Time 0.038 seconds

Selective Accumulation of Rhodamine B in Müller cells in Rabbit Retina (Rhodamine B 염료의 토끼 망막 뮬러세포에 대한 선택적 염색)

  • Kwon, Oh Ju;Lee, Eun Shil;Jeon, Chang Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.1
    • /
    • pp.91-95
    • /
    • 2011
  • Purpose: In this study, we investigated the dye to staining for selective accumulation in rabbit retina. Methods: Rhodamine B was injected into the vitreous body in rabbit. After 24 h, the isolated retina was checked condition of cell staining on the microscope. We used conventional immunocytochemical techniques for recognizing cell type. Results: Well-labeled nuclei were seen in the middle of the inner nuclear layer of the rabbit retina. The number and distrbution of the accumulating cells were similar to those of the m$\ddot{u}$ller glia. To identify m$\ddot{u}$ller cell, we used antibody directed against vimentin. Rhodamine B-immunoreactive nuclei also were labeled with antivimentin antibody. We found that Rhodamine B was accumulated selectively in retinal m$\ddot{u}$ller cell. Conclusions: Specific accumulation in rabbit retinal m$\ddot{u}$ller cell occurred when Rhodamine B was applied to living retina.

Removal of Rhodamine B Dye Using a Water Plasma Process (수중 플라즈마 공정을 이용한 Rhodamine B 염료의 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.218-225
    • /
    • 2011
  • Objectives: In this paper, a dielectric barrier discharge (DBD) plasma reactor was investigated for degrading the dye Rhodamine B (RhB) in aqueous solutions. Methods: The DBD plasma reactor system in this study consisted of a plasma component [titanium discharge (inner), ground (outer) electrode and quartz dielectric tube], power source, and gas supply. The effects of various parameters such as first voltage (input power), gas flow rate, second voltage (output power), conductivity and pH were investigated. Results: Experimental results showed that a 99% aqueous solution of 20 mg/l Rhodamine B is decolorized following an eleven minute plasma treatment. When comparing the performance of electrolysis and plasma treatment, the RhB degradation of the plasma process was higher that of the electrolysis. The optimum first voltage and air flow rate were 160 V (voltage of trans is 15 kV) and 3 l/min, respectively. With increased second voltage (4 kV to 15 kV), RhB degradation was increased. The higher the pH and the lower conductivity, the more Rhodamine B degradation was observed. Conclusions: OH radical generation of dielectric plasma process was identified by degradation of N, N-dimethyl-4-nitrosoaniline (RNO, indicator of OH radical generation). It was observed that the effect of UV light, which was generated as streamer discharge, on Rhodamine B degradation was not high. Rhodamine B removal was influenced by real second voltage regardless of initial first and second voltage. The effects of pH and conductivity were not high on the Rhodamine B degradation.

Spectrometric Determination of Rhodamine B in Chili Powder After Molecularly Imprinted Solid Phase Extraction

  • Liu, Xiuying;Zhang, Xuan;Zhou, Qian;Bai, Bing;Ji, Shujuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3381-3386
    • /
    • 2013
  • This paper reports a method using molecularly imprinted polymers that are grafted onto the surface of carboxyl-modified multi-walled carbon nanotubes as the solid-phase extraction adsorbents to detect Rhodamine B in chili powder samples. The polymers were characterized by FTIR and TGA. Various parameters which probably influence efficiency of extraction were optimized. The analytical parameters such as precision, accuracy and linear working range were also determined in optimal experimental conditions. And the proposed method was applied to analysis of Rhodamine B in chili powder samples. The limits of detection and quantification were 2.57 and 8.56 ${\mu}g/g$, respectively. The recoveries for analytes were higher than 95% and relative standard deviation values were found to be in the range of 0.83-4.15%. This method was successfully applied for the determination of Rhodamine B.

COD Removal of Rhodamine B from Aqueous Solution by Electrochemical Treatment

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.21 no.6
    • /
    • pp.655-659
    • /
    • 2012
  • This study elucidates the COD removal of dye (Rhodamine B) through electrochemical reaction. Effects of current density (7.2 to 43.3 $mA/cm^2$), electrolyte type (NaCl, KCl, $Na_2SO_4$, HCl), electrolyte concentration (0.5 to 2.0 g/L), air flow rate (0 to 4 L/min) and pH (3 to 11) on the COD removal of Rhodamine B were investigated. The observed results showed that the increase of pH decrease the COD removal efficiency. Whereas, the increase of current density;NaCl concentration and air flow rate caused the increase of the COD removal of Rhodamine B.

Decolorization of Rhodamine B by Electro Fenton-like Reaction (전기 펜톤-유사 반응을 이용한 Rhodamine B의 색 제거)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.37-44
    • /
    • 2008
  • The electro-chemical decolorization of Rhodamine B (RhB) in water has been carried out by electro Fenton-like process. The effect of distance, material and shape of electrode, NaCl concentration, current, electric power, $H_2O_2$ and pH have been studied. The results obtained that decrease of RhB concentration of Fe(+)-Fe(-) electrode system was higher than that of other electrode system. The decrease of RhB concentration was not affected electrode distance and shape. Decolorization of electro Fenton-like reaction, which was added $H_2O_2$ onto the electrolysis using electrode was higher than electrolysis. Addition of NaCl decreased the electric consumption. The lower pH is, the faster initial reaction rate and reaction termination time observed.

Biosorption of Rhodamine B onto Waste Activated Sludge: Equilibrium and Kinetic Modelling (폐 활성슬러지를 이용한 Rhodamine B의 생체흡착:흡착평혀여 및 흡착속도 모델링)

  • Lee Chang-Han;Ahn Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.9
    • /
    • pp.881-888
    • /
    • 2005
  • The biosorption of dye, Rhodamine B(Rh-B), onto waste activated sludge was investigated. The biosorption capacity and contact time were shown as a simulation of dye adsorption equilibrium and kinetics models. We observed that biosorption of Rh-B occurred rapidly less than 4 hr. These experimental data could be better fitted by a pseudo-second-order rate equation than a pseudo-first-order rate equation. The equilibrium dependence between biosorption capacity and initial concentration of Rh-B was estimated and it was found that the equilibrium data of biosorption were fitted by four kinds of model such as Langmuir, Freundlich, Redlich-Peterson, and Koble-Corrigan model. The average percentage errors, $\varepsilon(\%)$, observed between experimental and predicted values by above each model were $21.19\%,\;9.97\%,\;10.10\%\;and\;11.76\%$, respectively, indicating that Freundlich and Redlich-Peterson model could be fitted more accrately than other models.

Photocatalytic Decomposition of Rhodamine B over PbMoO4 Oxides Prepared Using Microwave-assisited Process (마이크로파 공정으로 제조된 PbMoO4 산화물에서 Rhodamine B의 광촉매 분해 반응)

  • Hong, Seong-Soo
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.178-183
    • /
    • 2015
  • Lead molybdate (PbMoO4) oxides were successfully synthesized using a conventional hydrothermal method and a microwave-assisted hydrothermal method. They were characterized by XRD, DRS, BET, Raman, SEM and PL. We also investigated the photocatalytic activity of these materials for the decomposition of Rhodamine B under UV-light irradiation. From XRD and Raman results, well-crystallized PbMoO4 crystals have been successfully synthesized regardless of preparation method and had 42~59 nm particle size. The PbMoO4 catalysts prepared using microwave-assisted process had the similar particle size and enhanced the photocatalytic activity when compared to that prepared by hydrothermal method. The PbMoO4 catalysts prepared under the irradiation of microwave for 75 min showed the highest photocatalytic activity. The PL peaks appears at about 530 nm at all catalysts and it was also shown that the excitonic PL signal is proportional to the photocatalytic activity for the decomposition of Rhodamine B.

Synthesis and Fluorescent Properties of New Rhodamine B Containing Phenothiazine Moiety (새로운 로다민 B 페노시아진 유도체의 합성과 형광 특성)

  • Son, Moon Su;Chang, Seung Hyun
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.955-960
    • /
    • 2015
  • A colorimetric chemosensors $Sn^{2+}$ have been designed and synthesized by three steps. The spirolactam ring-opening process of rhodamine B is one of the most useful mechanisms for controlling fluorescence properties. Herein, new fluorescent chemosensors 1 and 2 based on rhodamine B containing phenothiazine derivertive were synthesized. They exhibit selective fluorescence enhancement behaviour in the presence of $Sn^{2+}$ ion. Complexation between these compounds and the metal cations were confirmed through continuous variation method. It is observed that compounds 1, 2, and $Sn^{2+}$ ion are complexed by 1:1 formation. Especially the proposed compounds 1 and 2 exhibit quick, simple and facile synthetic route.

Design and Synthesis of Novel Rhodamine-based Chemosensor Probe Toward Cu2+ Cation

  • Son, Young-A
    • Textile Coloration and Finishing
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • Nowdays, fluorescent rhodamine chemosensors have attracted a worldwide interest due to its ability to selectively detect heavy and transition metal cations. Due to the importance in environmental and biological toxic effects, the developments of fluorescent chemosensors have been received considerable attention in recent. Especially, a rhodamine-based chemosensor probes have been proved to be useful by exhibiting the efficient "off-on" fluorescence switching toward selected metal cations. This fluorophore can undergo the transformation from non-fluorescent and colorless spirolactam derivative to fluorescent ring-open form. In this study, a new fluorescent chemosensor was synthesized using rhodamine B through two-step procedures, and its selectivity and related optical property were characterized. Selectivity and sensitivity was found toward $Cu^{2+}$ guest molecules and then related optical properties of rhodamine B based fluorescent chemosensor compound were characterized using discussed. In addition, computational calculation was used to determine the HOMO/LUMO values.