• Title, Summary, Keyword: Robustness analysis

Search Result 816, Processing Time 0.053 seconds

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

New indices of structural robustness and structural fragility

  • Andre, Joao;Beale, Robert;Baptista, Antonio M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1063-1093
    • /
    • 2015
  • Structural robustness has become an important design variable. However, based on the existing definitions of structural robustness it is often difficult to analyse and evaluate structural robustness, and sometimes not efficient since they mix structural robustness with several other structural variables. This paper concerns the development of a new structural robustness definition, and structural robustness and structural fragility indices. The basis for the development of the new indices is the analysis of the damage energy of structural systems for a given hazard scenario and involves a criterion to define an "unavoidable collapse" state. Illustrative examples are given detailing the steps and calculations needed to obtain values for both the structural robustness and the structural fragility indices. Finally, this paper presents the main advantages of the newly proposed definition and indices for the structural risk analysis over existing traditional methods.

A method to evaluate the risk-based robustness index in blast-influenced structures

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • Introduction of robustness index in the structure is done in three ways: deterministic robustness index, probabilistic robustness index, and risk-based robustness index. In past decades, there have been numerous researches to evaluate robustness index in both deterministic and probabilistic ways. In this research, by using a risk analysis, a risk-based robustness index has been defined for the structure. By creating scenarios in accordance with uncertainty parameters of critical and unexpected gas blast accident, a new method has been suggested for evaluating risk-based robustness index. Finally, a numerical example for the evaluation of risk-based robustness index of a four-storey reinforced concrete moment frame, designed and built based on Eurocode 8 code, has been presented with results showing a lower risk of robustness.

Structural robustness: A revisit

  • Andre, Joao
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.193-205
    • /
    • 2020
  • The growing need for assuring efficient and sustainable investments in civil engineering structures has determined a renovated interest in the rational design of such structures from designers, clients and authorities. As a result, risk-informed decision-making methodologies are increasingly being used as a direct decision tool or as an upper-level layer from which performance-based approaches are then calibrated against. One of the most important and challenging aspects of today's structural design is to adequately handle the system-level effects, the known unknowns and the unknown unknowns. These aspects revolve around assessing and evaluating relevant damage scenarios, namely those involving unacceptable/intolerable damage levels. Hence, the importance of risk analysis of disproportionate collapse, and along with it of robustness. However, the way robustness has been used in modern design codes varies substantially, from simple provisions of prescriptive rules to complex risk analysis of the disproportionate collapse. As a result, implementing design for robustness is still very much a grey area and more so when it comes to defining means to quantify robustness. This paper revisits the most common robustness frameworks, highlighting their merits and limitations, and identifies one among them which is very promising as a way forward to solve the still open challenges.

Proposing a Method for Robustness Index Evaluation of the Structures Based on the Risk Analysis of Main Shock and Aftershock

  • Abdollahzadeh, Gholamreza;Faghihmaleki, Hadi
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1710-1722
    • /
    • 2018
  • Investigating remained damages from terrible earthquakes, it could be concluded that some events including explosion because of defect and failure in the building mechanical facilities or caused by gas leak, firing, aftershocks, etc., which are occurred during or a few time after the earthquake, will increase the effects of damages. In this paper, by introducing a complete risk analysis which included direct and indirect risks for earthquake (the main shock) and aftershock, the corresponding robustness index was created that called as "robustness index sequential critical events risk-based". One of the main properties of the intended robustness index is using progressive collapse percentage in its evaluation. Then, in a numerical example for a 4-storey moment resisting steel frame structure, a method is presented for obtaining all effective parameters in robustness index evaluation based on the intended risk and at last its results were reported.

Local Sensitivity Analysis using Divergence Measures under Weighted Distribution

  • Chung, Younshik;Dey, Dipak K.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.3
    • /
    • pp.467-480
    • /
    • 2001
  • This paper considers the use of local $\phi$-divergence measures between posterior distributions under classes of perturbations in order to investigate the inherent robustness of certain classes. The smaller value of the limiting local $\phi$-divergence implies more robustness for the prior or the likelihood. We consider the cases when the likelihood comes form the class of weighted distribution. Two kinds of perturbations are considered for the local sensitivity analysis. In addition, some numerical examples are considered which provide measures of robustness.

  • PDF

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

Feedback control of intelligent structures with uncertainties and its robustness analysis

  • Cao, Zongjie;Wen, Bangchun;Kuang, Zhenbang
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.327-340
    • /
    • 2003
  • Variations in system parameters due to uncertainties of parameters may result in system performance deterioration and create system internal stability problems. Uncertainties in structural modeling of structures are often considered to ensure that the control system is robust with respect to response errors. So the uncertain concept plays an important role in the analysis and design of the engineering structures. In this paper, the active control of the intelligent structures with the uncertainties is studied and a new method for analyzing the robustness of systems with the uncertainties is presented. Firstly, the system with uncertain parameters is considered as the perturbation of the system with deterministic parameters. Secondly, the feedback control law is designed on the basis of deterministic system. Thirdly, perturbation analysis and robustness analysis of intelligent structures with uncertainties are discussed when the feedback control law is applied to the original system and perturbed system. Combining the convex model of uncertainties with the finite element method, the analysis theory of the robustness of intelligent structures with the uncertainties can be developed. The description and computation of the robustness of intelligent structures with uncertain parameters is obtained. Finally, a numerical example of the application of the present method is given to show the validity of the method.

Performance and Robustness of Discrete Perturbation Observer

  • Sangjoo Kwon;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.31.5-31
    • /
    • 2001
  • In conventional perturbation estimators such as disturbance observers(DOB) [1, 2] or time-delayed controllers(TDC) [3{5}, the low pass filter(so-called Q-filter) plays an important role in the stability and performance. However, a general design guideline or analysis for the Q-filter has not been researched yet. In this paper, a guideline for the design of discrete Q-filter is suggested in terms of the analysis of the relationship between the filter parameters and stability performance robustness in discrete-time domain. The analysis clarifies the discrete-time effect of the perturbation estimator and provides a transparent relationship between performance and robustness depending ...

  • PDF

On the Noise Robustness of Multilayer Perceptrons (다층퍼셉트론의 잡음 강건성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.213-217
    • /
    • 2003
  • In this paper, we analysize the noise robustness of MLPs(Multilayer perceptrons). Also, as a preprocessing stage of MLPs to improve noise robustness, we consider the ICA(independent component analysis) and PCA(principle component analysis). After analyzing the noise redunction effect using PCA or ICA, we verify the noise robustness of MLPs through handwritten-digit recognition simulations.

  • PDF