• Title/Summary/Keyword: RuO$_2$

Search Result 173, Processing Time 0.183 seconds

Interaction between RuO2 and Carbon Nanotubes - Photoemission and X-ray Absorption Study

  • Lee, Seung-Youb;Kim, Yoo-Seok;Jeon, Chel-Ho;Ihm, Kyu-Wook;Kang, Tai-Hee;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.567-567
    • /
    • 2012
  • Since the carbon nanotubes (CNTs) have extraordinary material properties, many researchers are trying to make a practical application in various fields [1]. In particular, the high surface area of CNTs was fascinated for nano-template on the catalytic system. $RuO_2$ coated CNTs are useful functional nano-composites in many applications, including super capacitors, fuel cells, biosensors, and field emitters. However, the research of interaction between CNTs and $RuO_2$ was not satisfied with various fields [2]. In this study, we will introduce the change of chemical and electrical state of $RuO_2$/CNTs at different temperatures by synchrotron radiation photoemission spectroscopy (SRPES). The t-MWCNTs used in this experiment were grown on the Ni/TiN/Si substrates by chemical vapor deposition. $RuO_2$ of 4-20 nm in thickness was deposited on the t-MWNTs by sputter. The SRPES measurements were carried out at the 4B1 beamline of the Pohang Accelerator Laboratory in Korea. The result of XPS measurement indicates that the deposited $RuO_2$ on the CNTs was reduced into pure Ru at above $300^{\circ}C$. And we confirmed that the effective work function of $RuO_2$/CNTs was decreased with increasing temperature.

  • PDF

Nano-Ruthenium Oxide Polymeric Composite pH Electrodes (나노 Ruthenium Oxide 고분자 복합재료 pH전극)

  • Park, Jongman
    • Journal of the Korean Chemical Society
    • /
    • v.62 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • Surface renewable nano-$RuO_2$/poly(methyl methacrylate) polymeric composite pH electrodes were prepared. The composite electrode with 53 wt% of nano-$RuO_2$ showed similar good response characteristics to nano-$IrO_2$ composite electrode reported earlier. It showed response slope of -58.7 mV/pH, response time of <1 s, surface renewability of $-57.0{\pm}0.3mV/pH$ (n=5) and long time stability for a month as well as low interferences but high interferences by electrochemically active species like $I^-$ and $Fe(CN){_6}^{3-}$. However, the response slope and time became worse at higher pH than 9 compared to those of nano-$IrO_2$ composite electrodes possibly due to the difference of physical properties resulting from higher content of nano-$RuO_2$ in polymeric composite matrix.

Electrical Properties of Thick-Film Resistor Prepared by Using RuO2-Glass Composite Powder (RuO2-유리 복합분말을 이용하여 제조된 후막 저항의 전기적 특성 연구)

  • Kim, Min-Sik;Ryu, Sung-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.301-307
    • /
    • 2017
  • The purpose of this study is to investigate the electrical properties of thick-film resistor (TFR) prepared from $CaO-ZnO-B_2O_3-Al_2O_3-SiO_2$ (CZBAS) glass containing $RuO_2$ particles. $RuO_2$-glass composite powder was made by mixing and melting oxide powders of constituents. For comparison, $RuO_2$ powder was simply mixed with glass powder. $RuO_2$-40wt% glass composite and mixture were dispersed in an organic binder to obtain printable resistor paste and then thick-film was formed by screen printing, followed by sintering at the range between $750^{\circ}C$ and $900^{\circ}C$ for 10 min with a heating rate of $50^{\circ}C/min$ in an ambient atmosphere. $RuO_2$-glass composite sample showed much higher resistance compared to the simple mixed sample. This could be attributed to the difference in conducting mechanism. After sintering at $850^{\circ}C$, temperature coefficient of resistance of composite sample was lower than that of simple-mixed sample. TFR with dense and homogeneous microstructure could be obtained by using $RuO_2$-glass composite powder.

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD (ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과)

  • Eom, Taejong;Park, Yunkyu;Lee, Chongmu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2
    • /
    • pp.94-98
    • /
    • 2005
  • $RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

Supercapacitive Properties of RuO2 and Ru-Co Mixed Oxide Deposited on Single-Walled Carbon Nanotube (단일벽 탄소나노튜브 상에 석출된 산화루테늄과 루테늄-코발트 혼합산화물의 수퍼커패시터 특성)

  • Ko, Jang Myoun;Kim, Kwang Man
    • Korean Chemical Engineering Research
    • /
    • v.47 no.1
    • /
    • pp.11-16
    • /
    • 2009
  • Composite electrodes for redox supercapacitor were prepared potentiodynamically by the deposition of $RuO_2$ and the co-deposition of Ru-Co mixed oxide on the surface of single-walled carbon nanotube. Electrode of Ru-Co mixed oxide, in which Ru(13.13 wt%) and Co(2.89 wt%) were deposited on the carbon nanotube, exhibited a similar specific capacitance(${\sim}620\;F\;g^{-1}$) with $RuO_2$ electrode at a low potential scan rate($10\;mV\;s^{-1}$), but showed a superior one ($570\;F\;g^{-1}$) at a high scan rate($500\;mV\;s^{-1}$) than that of $RuO_2$($475\;F\;g^{-1}$). Such increase in the specific capacitance at high scan rate by the co-deposition of Ru and Co species was due to the structural support of Co species to provide the electronic conduction through Ru species.

Characteristics of ALD-$Al_2O_3$ MIM Capacitor on $RuO_2$ Metal Electrode ($RuO_2$전극 위에 증착된 ALD-$Al_2O_3$ MIM 커패시터 특성)

  • Do, Seung-Woo;Mun, Kyung-Ho;Jang, Cheol-Yeong;Jung, Young-Chul;Lee, Jae-Sung;Lee, Yong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.143-144
    • /
    • 2005
  • Recently, MIM(metal-insulator-metal) capacitor is one of the essential device for DRAM device. In this thesis, $Al_2O_3$ thin film which has a relatively high dielectric constant was deposited by ALD(atomic layer deposition) using MPTMA and $H_2O$ source. Deposition temperature of $Al_2O_3$ thin film was $200^{\circ}C$ and its thickness was 300 ${\AA}$. $RuO_2$ bottom electrode was deposited by RF-magnetron sputtering using $RuO_2$ target. The physical characteristics of $Al_2O_3$ films were investigated by AES, TEM and Ellipsometry. Electrical characteristics were analyzed by C-V and I-V measurement.

  • PDF

Caracteristic of Ru thin films using ECR Plasma (ECR 플라즈마를 이용한 Ru 박막의 식각특성)

  • 함동은;이순우;안진호
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • /
    • pp.123-127
    • /
    • 2002
  • DRAM용 capacitor의 차세대 전극물질 후보 중의 하나인 Ru 박막을 고밀도의 ECR 플라즈마를 이용하여 식각 특성 및 식각 메커니즘을 알아보고자 하였다. 식각시 Ru은 oxygen들과 결합을 하여 RuO2 화합물들을 생성하고 RuO2 화합물들은 다시 oxygen들과 결합을 함으로써 휘발성이 강한 RuOx 화합물들을 생성하였다. 하지만 이러한 식각이 이루어지기 위해서는 oxygen이온들에 의한 충돌이 필요하며, Cl과 F 가스들을 첨가가 의해 충돌 이온의 에너지가 증가되어 RuO2와 O radical들의 반응성을 향상시켰다. 이에 휘발성이 좋은 RuO4들의 형성속도를 증가시킴으로써 식각 속도를 향상시킬 수 있었다.

  • PDF

Electrical Conduction Mechanisms of $RuO_2$ Based Thick Film Resistor ($RuO_2$계 후막저항체의 전기전도기구)

  • 구본급;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1529-1535
    • /
    • 1994
  • Electrical conduction mechanisms of RuO2-based thick film resistors were investigated with frequency depandence on AC conductivity. Electrical conduction mechanisms of lower resistivity system (100{{{{ OMEGA }}/sq) sintered at 600~90$0^{\circ}C$ were all metallic conduction mechanism. In case of higher resistivity (10K{{{{ OMEGA }}/sq) system, the electrical conduction mechanisms were very depenent on sintering temperature. When sintering temperature was $600^{\circ}C$, the electrical conduction mechamism was ionic, and as increasing the sintering temperature, the electrical conduction mechanism was changed from ionic to hopping conduction mechanism.

  • PDF

Growth of $RuO_2$ films and chracteristics of the films with annealing conditions ($RuO_2$박막의 성장과 어닐링 조건에 따른 특성)

  • 조굉래;임원택;이창효
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.333-339
    • /
    • 1999
  • $RuO_2$ thin films were prepared with various deposition conditions by rf magnetron sputtering. The films were annealed in vacuum, air, and air-vacuum, after that, the structural and electrical properties of the films were investigated. As the substrate temperature increases, the preferred orientation of the films changes from (101) to (200), and the grain size increases; especially, at $500^{\circ}C$, the size considerably increases. The preferred orientation of the films changes from (200) to (101) and the roughness of surface increase with the increase in oxygen partial pressure. The lowest value of resistivity of $RuO_2$ we prepared is $1.5\times 10^{-5}\Omega\codt\textrm{cm}$ at the conditions of $400^{\circ}C$ and 10% of oxygen partial pressure. After the processes of annealing, the films deposited at $400^{\circ}C$ and a oxygen partial pressure of 10% were relatively stable. The films deposited at $500^{\circ}C$ have denser structure and smoother surface when the films are annealed in vacuum after annealing in air.

  • PDF

A Study on the RuO2 Electrode Catalyst Prepared by Colloidal Method (콜로이드법으로 합성한 RuO2 전극촉매의 연구)

  • PARK, JIN-NAM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.193-200
    • /
    • 2019
  • $RuO_2$, $PtO_2$, and various $(Ru,Pt)O_2$ colloidal solution were prepared using modified Watanabe method. Electrodes were manufactured by dipping of Ni mesh into the colloidal solution. Manufactured electrodes were characterized by XRD, SEM, and EDS. $(Ru,Pt)O_2$ electrodes showed $RuO_2$ crystal structure and high roughness. The hydrogen evolution reaction (HER) activities were evaluated by Linear Sweep Voltammetry. 1Ru2Pt electrode showed similar activity with commercial electrode, HER potentials are -0.9 V for both.