• Title, Summary, Keyword: SRC 기둥

Search Result 39, Processing Time 0.113 seconds

Seismic Performance Evaluation of SRC Composite Column using Direct Displacement Based Design Method (직접변위기반 설계법에 의한 SRC 합성기둥의 내진성능평가)

  • Jung, In-Kju;Park, Soon-Eung;Kim, Dong-Hyuk
    • Journal of the Korean Association for Spatial Structures
    • /
    • v.12 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In this study, the displacement-based design concept, the performance by the existing reinforced concerte column and steel reinforced concrete composite column for SRC purchased the maximum design ground acceleration improvement compared to the performance design. SRC have several advantages such as strength enhancement and high ductility. H-beam or steel tubes were used for embedded elements of the SRC composite columns. SRC cross-section for the P-M diagram and analysis on the nominal bending monent SRC designed for composite columns for disparity estimation is presented to the displacement-based seismic design. Performance improvement of the performance-based design performance targets for the design seismic displacement and design criteria for the direct displacement-based design methods and to improve the seismic performance due to the displacement coefficient method is proposed to design. SRC compared with the RC column designed to improve the performance and displacement ductility ratio displacement results in the performance design results showed significantly improved performance.

Column Shortening of SRC Columns Considering the Differential Moisture Distribution (부등수분분포를 고려한 SRC 기둥의 축소량에 관한 연구)

  • Seol, Hyun-Cheol;Kim, Yun-Yong;Kwon, Seung-Hee;Kim, Han-Soo;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2006
  • Steel reinforced concrete(SRC) columns, which have been widely employed in high-rise buildings, exhibit a time-dependent behavior because of creep and shrinkage of concrete. This long-term behavior may cause a serious serviceability problem in structural systems, so it is very important to predict the deformation due to creep and shrinkage of concrete. However, it was found from the previous experimental studies that the long-term deformation of SRC columns was quite dissimilar from that of RC columns. A new method is required to quantitatively predict the long-term deformation of SRC columns. In this study, the causes of the discrepancy between the behaviors of RC and SRC columns are investigated and discussed. SRC columns exhibit a time-dependent relative humidity distribution in a cross section differently from that of reinforced concrete(RC) columns owing to the presence of a inner steel plate, which interferes with the moisture diffusion of concrete. This relative humidity distribution may reduce the drying shrinkage and the drying creep in comparison with RC columns. Therefore it is suggested that the differential moisture distribution should be taken into account in order to reasonably predict column shortening of SRC columns.

A Study on the Prediction of Shortening for Steel-Reinforced Concrete(SRC) Column in the High-Rise Buildings (초고층 건물에서 철골철근콘크리트(SRC) 기둥의 축소량 예측에 관한 연구)

  • Jeong Eun-Ho;Kim Jeom-Han
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1
    • /
    • pp.36-42
    • /
    • 2004
  • Although steel-reinforced concrete(SRC) is widely used in a high-rise building, a methods used to predict the column shortening of SRC structural members has many problems in applying a theoretical equation which considers only the material characteristics of reinforced concrete. In this study, the degree of accuracy of the existing method calculating the column shortening of a high-rise building is examined. For this, first, the actual measurement data are chosen about the column shortening of a high-rise building established with SRC structural members. Then the column shortening of a SRC structural member is calculated through computer program. Finally, the comparison between the measurement data and the analytical ones is executed. According to this study, it can be concluded that there is little difference between the former and the latter. Therefore, the existing method can be used to evaluate the column shortening of a high-rise building using a SRC structural members.

Shear Strength and Hysteretic Behavior of SRC Column to Steel Beam Joints (SRC 기둥-H 형강보 접합부의 전단강도 및 이력거동)

  • Lee, Seung Joon;Kim, Won Ki;Seo, Dong Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2
    • /
    • pp.277-285
    • /
    • 1997
  • To investigate the shear strength and hysteretic behavior of SRC column to H steel beam joints, seven cruciform specimens were fabricated and tested. The test specimens showed stable hysteresis behavior with a little pinching. The strength decreased with increase in deflection after the speciemens reached at the maximum strength. The shear strength of panel zones increased with increased in the concrete amount of SRC column sections. The shear strength may conservatively be estimated by the sum of shear yielding strength of steel column web, plastic bending strength of steel column flange and ultimate shear strength of concrete in the panel zone.

  • PDF

A Study about Damage of Steel Beam to SRC Column Connection in a New Extension Building (증축된 건축물의 SRC 기둥과 철골보 접합부 손상에 관한 연구)

  • Shim, Hak-Bo;Park, Soon-Jeon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.503-504
    • /
    • 2009
  • It is increased the necessity of the examination for safety of Steel Beam to SRC Column connection part in a new extension building. This study is presented the examination and cause analysis about damage of Steel Beam to SRC Column connection. so it is prevented collapse and extended use duration in building.

  • PDF

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

Experimental Study on Long-term Behavior of RC and SRC Columns (RC 기둥과 SRC 기둥의 장기거동에 관한 실험적 연구)

  • 권승희;김진근;정한욱
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.481-486
    • /
    • 2003
  • This paper presents experimental study on long-term behavior of RC and SRC columns. Shrinkage and creep tests were performed for two types of concrete used in manufacturing RC and SRC column specimens. Also, long-term tests under sustained load were carried out for RC and SRC column specimens. Shrinkage functions and creep coefficients to optimally fit the corresponding data were obtained from regression analysis and the regression results, ACI and CEB- FIP 90 model were applied to analyse long-term behvavior of RC and SRC column specimens. Creep coefficients calculated from test data were lower than those predicted by ACI and CEB-FIP 90 models. Long-term analysis results for RC and SRC column specimens using the regression results were relatively more accurate than those obtained using the existing models.

  • PDF

Field Measurement and Compensation Method of Column Shortening for SRC Columns in 37-story Residential Building (37층 초고층주상복합건물 SRC기둥의 기둥축소량 현장계측 및 보정법)

  • Song, Hwa-Cheol;Do,e Guen-Young;Cho, Hun-hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4
    • /
    • pp.145-152
    • /
    • 2005
  • Long-term axial shortening of the vertical elements of tail buildings results in differential movements between two elements and may lead to the additional moments of connection beam and slab elements, and other secondary effects, such as cracks of partitions or curtain walls. Accurate prediction of time-dependent column shortening is essential for tall buildings from both strength and serviceability aspects. The compensation method is different from reinforced concrete and SRC(Steel Reinforced Concrete) members. The SRC columns are usually compensated according to total differential shortening between two vertical elements. In this study, column shortenings of 37-story W building under construction are predicted and compensated. The SRC column shortenings are compared with the actual column shortening by field measurement and the column shortenings are reanalysed and recompensated.

Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles (고강도 앵글을 적용한 선조립 합성기둥의 압축 실험)

  • Hwang, Hyeon-Jong;Eom, Tae-Sung;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.361-369
    • /
    • 2012
  • In this study, prefabricated composite columns using high-strength angles (PSRC composite column) was studied. Concentric axial loading tests were performed for 2/3 scale PSRC specimens and an conventional SRC specimen with H-steel at the center of the cross-section. The test parameters were the steel ratio of angles and the spacing of lateral re-bars. The test results showed that by placing the angles at the corners of the cross-section for confinement with provided for the core concrete, the PSRC column specimens exhibited greater load-carrying capacity and deformation capacity than those of the conventional SRC column. The axial load-carrying capacity of the PSRC columns was greater than the prediction by KBC 2009. Using existing stress-strain relationship of confined concrete, the axial load-deformation relationship of the specimens were predicted. The numerical predictions correlated well with the test results in terms of initial stiffness, load-carrying capacity, and post-peak strength- and stiffness-degradations.

Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar (앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험)

  • Eom, Tae-Sung;Hwang, Hyeon-Jong;Park, Hong-Gun;Lee, Chang-Nam;Kim, Hyoung-Seop
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.535-547
    • /
    • 2012
  • PSRC column is a concrete encased steel angle column. In the PSRC column, the steel angles placed at the corner of the cross-section resists bending moment and compression load. The lateral re-bars welded to steel angles resist the column shear and the bond between the steel angle and concrete. In the present study, current design procedures in KBC 2009 were applied to the flexure-compression, shear, and bond design of the PSRC composite column. To verify the validity of the design method and failure mode, simply supported 2/3 scaled PSRC and correlated SRC beams were tested under two point loading. The test parameters were the steel angle ratio and lateral bar spacing. The test results showed that the bending, shear, and bond strengths predicted by KBC 2009 correlated well with the test results. The flexural strength of the PSRC specimens was much greater than that of the SRC specimen with the same steel ratio because the steel angles were placed at the corner of the column section. However, when the bond resistance between the steel angle and concrete was not sufficient, brittle failures such as bond failure of the angle, spalling of cover concrete, and the tensile fracture of lateral re-bar occurred before the development of the yield strength of PSRC composite section. Further, if the weldability and toughness of the steel angle were insufficient, the specimen was failed by the fracture of the steel angle at the weld joint between the angle and lateral bars.