• Title, Summary, Keyword: SSD-OFDM

Search Result 4, Processing Time 0.026 seconds

Combination System Design of 5G Candidate Modulation and Full Duplex Communication for the Spectrum Efficiency Enhancement (스펙트럼 효율 향상을 위한 전이중 통신 방식과 5G 후보 변조기술과의 결합시스템 설계)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.369-376
    • /
    • 2016
  • In this paper, we propose and design a SSD(Simultaneous Single band Duplex) system using 5G(Generation) candidate modulations. Especially, we consider HPA(High Power Amplifier) nonlinearity in the proposed system. And then, we evaluate and analyze performance of the proposed system. As simulation results, performance of SSD-OFDM(Orthogonal Frequency Division Multiplexing), SSD-FMC (Universal Filtered Multi-Carrier), and SSD-FBMC(Filter Bank Multi-Carrier) is severely degraded by HPA nonlinearity. However, performance of SSD-OFDM, SSD-UFMC, and SSD-FBMC is similar in the same condition. That is, OFDM, UFMC, and FBMC have a similar PAPR(Peak to Average Power Ratio) characteristic. Finally, we can confirm that the proposed SSD system can not cancel(SI) self-interference effectively by strong HPA nonlinearity. That is, Reducing PAPR is important in order to avoid effect of HPA nonlinearity in the proposed SSD system.

Coded Layered Space-Time Transmission with Signal Space Diversity in OFDM Systems (신호 공간 다이버시티 기법을 이용한 OFDM 기반의 부호화된 시공간 전송기법)

  • Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.7C
    • /
    • pp.644-651
    • /
    • 2007
  • In multiple antenna systems, vertical Bell Labs Layered Space-Time (V-BLAST) systems enable very high throughput by nulling and cancelling at each layer detection. In this paper, we propose a V-BLAST system which combines with signal space diversity technique. The benefit of the signal space diversity is that we can obtain an additional gain without extra bandwidth and power expansion by applying inphase/quadrature interleaving and the constellation rotation. Through simulation results, it is shown that the performance of the proposed system is less than 0.5dB away from the ideal upper bound.

On the Gain of Component-Swapping Technique with DVB-T2 16K LDPC Codes in MIMO-OFDM Systems (DVB-T2 16K LDPC 부호가 적용된 MIMO-OFDM 시스템에서의 성분 맞교환 기술 이득)

  • Jeon, Sung-Ho;Yim, Zung-Kon;Kyung, Il-Soo;Kim, Man-Sik
    • Journal of Broadcast Engineering
    • /
    • v.15 no.6
    • /
    • pp.749-756
    • /
    • 2010
  • The signal space diversity is one of the promising transmission techniques in next generation mobile TV service. However, DVB-T2 does not consider the multiple antennas (MIMO) so that the cyclic Q-delay method, a component interleaver in DVB-T2, causes a critical issue in detecting symbols at the receiver side by increasing the inter-symbol dependency. To solve this problem, the component-swapping technique is proposed, which limits the inter-symbol dependency in order to reduce detection complexity. In this paper, the achievable gain of a component-swapping technique combined with 16K LDPC code defined in DVB-T2 is evaluated by computer simulations. From the results, the gain is confirmed in terms of BER and receive complexity compared to legacy component interleaver methods.

Dynamic Jop Distribution Algorithm for Reducing Deadlock & Packet Drop Rate in NoC (NoC 시스템에서 Deadlock과 패킷 drop율 감소를 위한 동적 Job Distribution 알고리듬에 관한 연구)

  • Kim, Woo-Joo;Lee, Sung-Hee;Hwang, Sun-Young
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.528-537
    • /
    • 2008
  • This paper proposes a dynamic job distribution algorithm in a hybrid NoC structure which can improve system network performance by reducing deadlock and packet drop rate for various multimedia applications. The proposed job distribution algorithm schedules every job to the sub-cluster where packet drop rate can be minimized for each multimedia application program. The proposed Job distribution algorithm and network topology targets multimedia applications frequently used in modern embedded systems, such as MPEG4 and MP3 decoder, GPS positioning system, and OFDM demodulator. Experimental results show that packet drop rate was reduced by about 13.0%, and chip area was increased by about 2.7% compared to the APSRA algorithm. When compared to the XY algorithm popularly used for benchmarking, the packet drop rate was reduced by about 23.9%, while chip area was increased by about 3.0%.