• Title/Summary/Keyword: Sensor Networks

Search Result 2,645, Processing Time 0.198 seconds

A FRAMEWORK FOR QUERY PROCESSING OVER HETEROGENEOUS LARGE SCALE SENSOR NETWORKS

  • Lee, Chung-Ho;Kim, Min-Soo;Lee, Yong-Joon
    • Proceedings of the KSRS Conference
    • /
    • /
    • pp.101-104
    • /
    • 2007
  • Efficient Query processing and optimization are critical for reducing network traffic and decreasing latency of query when accessing and manipulating sensor data of large-scale sensor networks. Currently it has been studied in sensor database projects. These works have mainly focused on in-network query processing for sensor networks and assumes homogeneous sensor networks, where each sensor network has same hardware and software configuration. In this paper, we present a framework for efficient query processing over heterogeneous sensor networks. Our proposed framework introduces query processing paradigm considering two heterogeneous characteristics of sensor networks: (1) data dissemination approach such as push, pull, and hybrid; (2) query processing capability of sensor networks if they may support in-network aggregation, spatial, periodic and conditional operators. Additionally, we propose multi-query optimization strategies supporting cross-translation between data acquisition query and data stream query to minimize total cost of multiple queries. It has been implemented in WSN middleware, COSMOS, developed by ETRI.

  • PDF

Data-centric Sensor Middleware for Heterogeneous Sensor Networks (이기종 센서 네트워크를 위한 데이터 중심적 센서 미들웨어)

  • Nam, Choon-Sung;Shin, Dong-Ryeol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.6
    • /
    • pp.323-330
    • /
    • 2012
  • Wireless sensor networks need middleware system for efficiently managing the constrained resource and sensing data because they need different sensing data type and protocol to communicate with heterogeneous sensor networks. Thus this paper proposes data-centric sensor middleware for heterogeneous sensor networks. The proposed middleware have to support various query processing of user applications, high-level request of users, manage heterogeneous sensor systems and universal sensing data type for node and user application.

Analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks (무선 센서 네트워크망에서의 효율적인 키 관리 프로토콜 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.799-802
    • /
    • 2005
  • In this paper, we analyses of Key Management Protocol for Wireless Sensor Networks in Wireless Sensor Networks. Wireless sensor networks have a wide spectrum of civil military application that call for security, target surveillance in hostile environments. Typical sensors possess limited computation, energy, and memory resources; therefore the use of vastly resource consuming security mechanism is not possible. In this paper, we propose a cryptography key management protocol, which is based on identity based symmetric keying.

  • PDF

A Cluster-Based Energy-Efficient Routing Protocol without Location Information for Sensor Networks

  • Lee, Gil-Jae;Kong, Jong-Uk;Lee, Min-Sun;Byeon, Ok-Hwan
    • Journal of Information Processing Systems
    • /
    • v.1 no.1
    • /
    • pp.49-54
    • /
    • 2005
  • With the recent advances in Micro Electro Mechanical System (MEMS) technology, low cost and low power consumption wireless micro sensor nodes have become available. However, energy-efficient routing is one of the most important key technologies in wireless sensor networks as sensor nodes are highly energy-constrained. Therefore, many researchers have proposed routing protocols for sensor networks, especially cluster-based routing protocols, which have many advantages such as reduced control messages, bandwidth re-usability, and improved power control. Some protocols use information on the locations of sensor nodes to construct clusters efficiently. However, it is rare that all sensor nodes know their positions. In this article, we propose another cluster-based routing protocol for sensor networks. This protocol does not use information concerning the locations of sensor nodes, but uses the remaining energy of sensor networks and the desirable number of cluster heads according to the circumstances of the sensor networks. From performance simulation, we found that the proposed protocol shows better performance than the low-energy adaptive clustering hierarchy (LEACH).

A Survey on Transport Protocols for Wireless Multimedia Sensor Networks

  • Costa, Daniel G.;Guedes, Luiz Affonso
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.241-269
    • /
    • 2012
  • Wireless networks composed of multimedia-enabled resource-constrained sensor nodes have enriched a large set of monitoring sensing applications. In such communication scenario, however, new challenges in data transmission and energy-efficiency have arisen due to the stringent requirements of those sensor networks. Generally, congested nodes may deplete the energy of the active congested paths toward the sink and incur in undesired communication delay and packet dropping, while bit errors during transmission may negatively impact the end-to-end quality of the received data. Many approaches have been proposed to face congestion and provide reliable communications in wireless sensor networks, usually employing some transport protocol that address one or both of these issues. Nevertheless, due to the unique characteristics of multimedia-based wireless sensor networks, notably minimum bandwidth demand, bounded delay and reduced energy consumption requirement, communication protocols from traditional scalar wireless sensor networks are not suitable for multimedia sensor networks. In the last decade, such requirements have fostered research in adapting existing protocols or proposing new protocols from scratch. We survey the state of the art of transport protocols for wireless multimedia sensor networks, addressing the recent developments and proposed strategies for congestion control and loss recovery. Future research directions are also discussed, outlining the remaining challenges and promising investigation areas.

Communication Pattern Based Key Establishment Scheme in Heterogeneous Wireless Sensor Networks

  • Kim, Daehee;Kim, Dongwan;An, Sunshin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1249-1272
    • /
    • 2016
  • In this paper, we propose a symmetric key establishment scheme for wireless sensor networks which tries to minimize the resource usage while satisfying the security requirements. This is accomplished by taking advantage of the communication pattern of wireless sensor networks and adopting heterogeneous wireless sensor networks. By considering the unique communication pattern of wireless sensor networks due to the nature of information gathering from the physical world, the number of keys to be established is minimized and, consequently, the overhead spent for establishing keys decreases. With heterogeneous wireless sensor networks, we can build a hybrid scheme where a small number of powerful nodes do more works than a large number of resource-constrained nodes to provide enhanced security service such as broadcast authentication and reduce the burden of resource-limited nodes. In addition, an on-demand key establishment scheme is introduced to support extra communications and optimize the resource usage. Our performance analysis shows that the proposed scheme is very efficient and highly scalable in terms of storage, communication and computation overhead. Furthermore, our proposed scheme not only satisfies the security requirements but also provides resilience to several attacks.

COSMOS: A Middleware for Integrated Data Processing over Heterogeneous Sensor Networks

  • Kim, Ma-Rie;Lee, Jun-Wook;Lee, Yong-Joon;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.696-706
    • /
    • 2008
  • With the increasing need for intelligent environment monitoring applications and the decreasing cost of manufacturing sensor devices, it is likely that a wide variety of sensor networks will be deployed in the near future. In this environment, the way to access heterogeneous sensor networks and the way to integrate various sensor data are very important. This paper proposes the common system for middleware of sensor networks (COSMOS), which provides integrated data processing over multiple heterogeneous sensor networks based on sensor network abstraction called the sensor network common interface. Specifically, this paper introduces the sensor network common interface which defines a standardized communication protocol and message formats used between the COSMOS and sensor networks.

  • PDF

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks (무선 센서 네트워크에서 다중 공격 방어를 위한 보안 라우팅 기법)

  • Moon, Soo-Young;Cho, Tae-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.1
    • /
    • pp.45-56
    • /
    • 2010
  • Sensor Networks are composed of many sensor nodes, which are capable of sensing, computing, and communicating with each other, and one or more sink node(s). Sensor networks collect information of various objects' identification and surrounding environment. Due to the limited resources of sensor nodes, use of wireless channel, and the lack of infrastructure, sensor networks are vulnerable to security threats. Most research of sensor networks have focused on how to detect and counter one type of attack. However, in real sensor networks, it is impractical to predict the attack to occur. Additionally, it is possible for multiple attacks to occur in sensor networks. In this paper, we propose the Secure Routing Mechanism to Defend Multiple Attacks in Sensor Networks. The proposed mechanism improves and combines existing security mechanisms, and achieves higher detection rates for single and multiple attacks.

Analyses of Vulnerability and Security Mechanisms in Wireless Sensor Networks (무선센서네트워크에서의 취약성 및 보안 메카니즘의 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • /
    • pp.805-808
    • /
    • 2009
  • Security has become a major concern for many real world applications for wireless sensor networks (WSN). In this domain, many security solutions have been proposed. Usually, all these approaches are based on wellknown cryptographic algorithms. At the same time, performance studies have shown that the applicability of sensor networks strongly depends on effective routing decisions or energy aware wireless communication. In this paper, we analyses vulnerability and security mechanisms in wireless sensor networks.

  • PDF