• Title, Summary, Keyword: Shapiro-Wilk test and Shapiro-Francia test

Search Result 2, Processing Time 0.022 seconds

A View on the Validity of Central Limit Theorem: An Empirical Study Using Random Samples from Uniform Distribution

  • Lee, Chanmi;Kim, Seungah;Jeong, Jaesik
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.539-559
    • /
    • 2014
  • We derive the exact distribution of summation for random samples from uniform distribution and then compare the exact distribution with the approximated normal distribution obtained by the central limit theorem. To check the similarity between two distributions, we consider five existing normality tests based on the difference between the target normal distribution and empirical distribution: Anderson-Darling test, Kolmogorov-Smirnov test, Cramer-von Mises test, Shapiro-Wilk test and Shaprio-Francia test. For the purpose of comparison, those normality tests are applied to the simulated data. It can sometimes be difficult to derive an exact distribution. Thus, we try two different transformations to find out which transform is easier to get the exact distribution in terms of calculation complexity. We compare two transformations and comment on the advantages and disadvantages for each transformation.

Comprehensive comparison of normality tests: Empirical study using many different types of data

  • Lee, Chanmi;Park, Suhwi;Jeong, Jaesik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1399-1412
    • /
    • 2016
  • We compare many normality tests consisting of different sources of information extracted from the given data: Anderson-Darling test, Kolmogorov-Smirnov test, Cramervon Mises test, Shapiro-Wilk test, Shaprio-Francia test, Lilliefors, Jarque-Bera test, D'Agostino' D, Doornik-Hansen test, Energy test and Martinzez-Iglewicz test. For the purpose of comparison, those tests are applied to the various types of data generated from skewed distribution, unsymmetric distribution, and distribution with different length of support. We then summarize comparison results in terms of two things: type I error control and power. The selection of the best test depends on the shape of the distribution of the data, implying that there is no test which is the most powerful for all distributions.