• Title, Summary, Keyword: Silicon

Search Result 8,068, Processing Time 0.083 seconds

Thermodynamic Consideration for SiC synthesis by Using Sludged Silicon Powder (폐슬러지를 이용한 SiC 합성에 관한 열역학적 고찰)

  • 최미령;김영철
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.1
    • /
    • pp.21-24
    • /
    • 2003
  • Sludged silicon powders that are generated during silicon ingot slicing process have potential usage as silicon source in fabricating silicon carbide powders by adding carbon. A thermodynamic calculation is performed to consider a plausible formation condition for the silicon carbide powders. A thin silicon oxide layer around silicon powder is sufficient to supply equilibrium oxygen partial pressure at the formation temperature($1400^{\circ}C$) of the silicon carbide in the Si-C-O ternary system. Formation of silicon carbide by using the sludged silicon powders is more efficient than by using silicon oxide powders.

  • PDF

Study of Light-induced Degradation in Thin Film Silicon Solar Cells: Hydrogenated Amorphous Silicon Solar Cell and Nano-quantum Dot Silicon Thin Film Solar Cell (박막 실리콘 태양전지의 광열화현상 연구: 비정질 실리콘 태양전지 및 나노양자점 실리콘 박막 태양전지)

  • Kim, Ka-Hyun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • Light induced degradation is one of the major research challenges of hydrogenated amorphous silicon related thin film silicon solar cells. Amorphous silicon shows creation of metastable defect states, originating from elevated concentration of dangling bonds during light exposure. The metastable defect states work as recombination centers, and mostly affects quality of intrinsic layer in solar cells. In this paper we present results of light induced degradation in thin film silicon solar cells and discussion on physical origin, mechanism and practical solutions of light induced degradation in thin film silicon solar cells. In-situ light-soaking IV measurement techniques are presented. We also present thin film silicon material with silicon nano-quantum dots embedded within amorphous matrix, which shows superior stability during light-soaking. Our results suggest that solar cell using silicon nano-quantum dots in abosrber layer shows superior stability under light soaking, compared to the conventional amorphous silicon solar cell.

Effective Silicon Oxide Formation on Silica-on-Silicon Platforms for Optical Hybrid Integration

  • Kim, Tae-Hong;Sung, Hee-Kyung;Choi, Ji-Won;Yoon, Ki-Hyun
    • ETRI Journal
    • /
    • v.25 no.2
    • /
    • pp.73-80
    • /
    • 2003
  • This paper describes an effective method for forming silicon oxide on silica-on-silicon platforms, which results in excellent characteristics for hybrid integration. Among the many processes involved in fabricating silica-on-silicon platforms with planar lightwave circuits (PLCs), the process for forming silicon oxide on an etched silicon substrate is very important for obtaining transparent silica film because it determines the compatibility at the interface between the silicon and the silica film. To investigate the effects of the formation process of the silicon oxide on the characteristics of the silica PLC platform, we compared two silicon oxide formation processes: thermal oxidation and plasma-enhanced chemical vapor deposition (PECVD). Thermal oxidation in fabricating silica platforms generates defects and a cristobalite crystal phase, which results in deterioration of the optical waveguide characteristics. On the other hand, a silica platform with the silicon oxide layer deposited by PECVD has a transparent planar optical waveguide because the crystal growth of the silica has been suppressed. We confirm that the PECVD method is an effective process for silicon oxide formation for a silica platform with excellent characteristics.

  • PDF

Effect of Silicon Infiltration on the Mechanical Properties of 2D Cross-ply Carbon-Carbon Composites

  • Dhakate, S.R.;Aoki, T.;Ogasawara, T.
    • Carbon letters
    • /
    • v.5 no.3
    • /
    • pp.108-112
    • /
    • 2004
  • Effect of silicon infiltration on the bend and tensile strength of 2D cross-ply carbon-carbon composites are studied. It is observed that bend strength higher than tensile strength in both types of composite is due to the different mode of fracture and loading direction. After silicon infiltrations bend and tensile strength suddenly decreases of carbon-carbon composites. This is due to the fact that, after silicon infiltration, silicon in the immediate vicinity of carbon forms the strong bond between carbon and silicon by formation silicon carbide and un-reacted silicon as free silicon. Therefore, these composites consist of three components carbon, silicon carbide and silicon. Due to mismatch between these three components secondary cracks developed and these cracks propagate from $90^{\circ}$ oriented plies to $0^{\circ}$ oriented plies by damaging the fibers (i.e., in-situ fiber damages). Hence, secondary cracks and in-situ fiber damages are responsible for degradation of mechanical properties of carbon-carbon composites after silicon infiltration which is revealed by microstructure investigation study by scanning electron microscope.

  • PDF

A study on th reaction between silicon in melt and carbon (용융상태에서의 silicon과 carbon의 반응에 관한 연구)

  • M.J. Lee;B.J. Kim;S.M. Kang;J.K. Choi;B.S. Jeon;Keun Ho Orr
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.4 no.4
    • /
    • pp.336-346
    • /
    • 1994
  • We studied the reaction between silicon and carbon. Silicon granules and silicon with 0.2 wt% carbon powders were prepared for sample and then they were heated up to the $1450^{\circ}C, 1550^{\circ}C, 1650^{\circ}C, 1700^{\circ}C$ and were dwelled 1 hr and 4 hrs, respectively. we studied the change of morphologies of molten silicon and the formation of SiC following the reaction withcarbon using optical microscope, SEM, and XRD. Above the melting point of silicon, oxygens are precipitated during the decomposition of quartz used crucible. SiO formed from the reaction between molten silicon and precipitated oxygen evaporated and made the surface defects. SiC were formed with the reaction between the unreacted carbon and molten silicon. Polytype of the SiC formed at the solidification interface was ${\alpha}-SiC$.

  • PDF

Effect of Silicon Nitride Whisker Content on the Flexural Strength of Silicon Nitride-Boron Nitride-Silicon Carbide Multi-Layer Composites

  • Park, Dong-Soo;Cho, Byung-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.832-836
    • /
    • 2003
  • Multi-layer ceramic composites were prepared by tape casting followed by hot pressing using silicon nitride layer with silicon nitride whiskers, silicon nitride layer with silicon carbide particles and boron nitride-alumina layer. The whiskers were aligned during the casting. As the whisker content of the silicon nitride layer was increased up to 10 wt%, the flexural strength of the multi-layer composite was increased. However, further increase of the whisker content in the layer resulted in a rapid decrease of the strength of the composite. The results suggest that the strength of multi-layer ceramic composite showing non-catastrophic failure behavior can be significantly improved by incorporating the aligned whiskers in the layers.

Detection of Nitroaromatic Compounds Based on Silicon Nanoparticles (실리콘 나노 입자를 이용한 니트로방향족 화합물의 탐지)

  • Song, Jinwoo
    • Journal of the Chosun Natural Science
    • /
    • v.2 no.1
    • /
    • pp.37-40
    • /
    • 2009
  • Synthesis and characterization of alkyl-capped nanocrystalline silicon (R-n-Si) have been achieved from the reaction of silicontetrachloride with magnesiumsilicide. Surface of silicon nanocrystal has been derivatized with various alkyl groups (R=methyl, n-butyl, etc.). Silicon nanoparticles have been also obtained by the sonication of luminescent porous silicon. Former exhibits an emission band at 360 nm, but latter exhibits an emission band at 680 nm. In this study very sensitive detection of TNT (2,4,6-trinitrotoluene), DNT (2,4-dinitrotoluene), NB (nitrobenzene), and PA (picric acid) has been achieved in gas phase with porous silicon using photoluminescence quenching of the silicon crystallites as a transduction mode. Porous silicon are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid. We have characterized these silicon nanoparticles by Luminescence Spectrometer (LS 55).

  • PDF

Hydrogen and Alkali Ion Sensing Properties of Ion Implanted Silicon Nitride Thin Film

  • Park, Gu-Bum
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.6
    • /
    • pp.231-236
    • /
    • 2008
  • B, P, and Cs ions were implanted with various parameters into silicon nitride layers prepared by LPCVD. In order to get the maximum impurity concentration at the silicon nitride surface, a high temperature oxide (HTO) buffer layers was deposited prior to the implantation. Alkali ion and pH sensing properties of the layers were investigated with an electrolyte-insulator-silicon (EIS) structure using high frequency capacitance-voltage (HF-CV) measurements. The ion sensing properties of implanted silicon nitrides were compared to those of as-deposited silicon nitride. Band Cs co-implanted silicon nitrides showed a pronounced difference in pH and alkali ion sensing properties compared to those of as-deposited silicon nitride. B or P implanted silicon nitrides in contrast showed similar ion sensitivities like those of as-deposited silicon nitride.

Fabrication and Characterization of Free-Standing Silicon Nanowires Based on Ultrasono-Method

  • Lee, Sung-Gi;Sihn, Donghee;Um, Sungyong;Cho, Bomin;Kim, Sungryong;Sohn, Honglae
    • Journal of the Chosun Natural Science
    • /
    • v.6 no.3
    • /
    • pp.170-175
    • /
    • 2013
  • Silicon nanowires were detached and obtained from silicon nanowire arrays on silicon substrate using a ultrasono-method. Silicon nanowire arrays on silicon substrate were prepared with an electroless metal assisted etching of p-type silicon. The etching solution was an aqueous HF solution containing silver nitrate. SEM observation shows that well-aligned nanowire arrays perpendicular to the surface of the silicon substrate were produced. After sonication of silicon nanowire array, an individual silicon nanowire was confirmed by FESEM. Optical characteristics of SiNWs were measured by FT-IR spectroscopy. The surface of SiNWs are terminated with hydrogen.

Quality evaluation of diamond wire-sawn gallium-doped silicon wafers

  • Lee, Kyoung Hee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.3
    • /
    • pp.119-123
    • /
    • 2013
  • Most of the world's solar cells in photovoltaic industry are currently fabricated using crystalline silicon. Czochralski-grown silicon crystals are more expensive than multicrystalline silicon crystals. The future of solar-grade Czochralski-grown silicon crystals crucially depends on whether it is usable for the mass-production of high-efficiency solar cells or not. It is generally believed that the main obstacle for making solar-grade Czochralski-grown silicon crystals a perfect high-efficiency solar cell material is presently light-induced degradation problem. In this work, the substitution of boron with gallium in p-type silicon single crystal is studied as an alternative to reduce the extent of lifetime degradation. The diamond-wire sawing technology is employed to slice the silicon ingot. In this paper, the quality of the diamond wire-sawn gallium-doped silicon wafers is studied from the chemical, electrical and structural points of view. It is found that the characteristic of gallium-doped silicon wafers including texturing behavior and surface metallic impurities are same as that of conventional boron-doped Czochralski crystals.