• Title, Summary, Keyword: Slotless PMLSM

Search Result 26, Processing Time 0.038 seconds

Shape Design of Slotless Type PMLSM for Improving Thrust Density (Slotless 영구자석형 선형 동기전동기의 고추력화를 위한 형상 설계)

  • 김용철;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.7
    • /
    • pp.320-326
    • /
    • 2003
  • Slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force, this paper applies the neural network to inserted core type of slotless PMLSM. The, Magnetic pole ratio, the width of the inserted core and the width of the coil are selected as a design parameter to minimize detent force. In comparison with inserted core type one, thrust ripple greatly decreases by minimizing detent force and also thrust increases in this optimal model.

Optimum design of slotless PMLSM by using multiobjective function neural network (다중목적함수 신경 회로망을 이용한 slotless PMLSM의 최적 설계)

  • Kim, Mi-Yong;Lee, Dong-Yeup;Jung, Chun-Gil;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.855-857
    • /
    • 2003
  • A slotless Permanent Magnet Linear Synchronous Motor (PMLSM) has good control ability but thrust density is low. So, this paper proposes inserted core type of slotless PMLSM to improve its low thrust density. Inserting the core between windings of each phase, detent force is generated by the difference of magnetic resistance in an air gap. To minimize detent force and maxize thrust, this paper applies the neural network to inserted core type of slotless PMLSM.

  • PDF

Core Shape Design of Slotless PMLSM for High Power (Slotless PMLSM의 고출력 화를 위한 Core형상 설계)

  • Kim, Yong-Chul;Kim, Mi-Yong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.67-69
    • /
    • 2002
  • This paper present increasing of Power density of slotless PMLSM by inserting core between phase winding. PM width is changed and PM is divided into two part to reduce and eliminate high order space harmonics affecting torque ripple. Flux density, back EMF, inductance, thrust, normal and detent force are computed by 2D FEM, and analysis values are compared with each other.

  • PDF

Optimal Design for Thrust and Detent Force in Inserted Core Type Slotless PMLSM with Consideration of End Effect (단부효과를 고려한 철심 삽입형 Slotless PMLSM의 추력 및 디텐트력 최적화 설계)

  • 김미용;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.9
    • /
    • pp.525-531
    • /
    • 2004
  • This paper proposes inserted core type of slotless Permanent Magnet Linear Synchronous Motor(PMLSM) to improve its low thrust density. However, by inserting the core between windings of each phase, detent force is generated and it acts as thrust ripple. Furthermore, linear motors generate end effect making thrust ripple. So, this paper applies the neural network to minimize detent force and to maximize thrust. Also, sub-poles is placed at the end parts of the mover to compensate end effect. To confirm of calculation method's validity, the calculated results are compared with experimental results.

A Study on the Optimum Design of Soltless Type PMLSM Using Genetic Algorithm and 3-D Space Harmonic Method (유전 알고리즘과 3차원 공간고조파법을 이용한 Soltless Type PMLSM의 최적설계에 관한 연구)

  • 이동엽;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.8
    • /
    • pp.463-468
    • /
    • 2004
  • This paper was applied space harmonic method as a characteristic analysis technique for slotless PMLSM. There is advantages of active response to the change of design parameters as well as reduction of the calculation time. The method can be overcome disadvantages of finite element analysis that needs long times calculation, repetitions of pre and post-process. In this paper, 3D-space harmonic method was applied to consider the precise description of end turn coil shape and the changes of characteristic according to changes of length of z-axis direction. The thrust of optimal design was performed using genetic algorithm to enhance the thrust which is the disadvantage of slotless type PMLSM. For design parameters, width of permanent magnet, width of coil, width of coil inner and lengths of z-axis direction were selected. For objective functions. thrust per weight. thrust per volume. multi-objective function was selected.

Starting Characteristic Analysis of a Slotless type Permanent Magnet Linear Synchronous Motor using 3-D Space Harmonic Method (3차원 공간고조파법을 이용한 슬롯리스형 영구자석 선형 동기 전동기의 기동특성 해석)

  • An, Ho-Jin;Gang, Gyu-Hong;Kim, Gyu-Taek
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.379-386
    • /
    • 2002
  • This paper deals with dynamic analysis method of a slotless type permanent magnet linear synchronous motor(PMLSM) using 3-dimensional space harmonic method. The results are good agreement with FEA results because that slotless type PMLSM has simple structure and no saturation of core. And then, Under open-loop control, starting characteristic is analyzed by voltage equation combining with dynamic equation. In order to obtain more accuracy results, this paper use instantaneous back-EMF and thrust instead of back-EMF constant and thrust constant.

Optimization of Slotless type Permanent Magnet Linear Synchronous Meter using Genetic Algorithms (유전 알고리즘을 이용한 Slotless type PMLSM의 최적화)

  • Lee, Dong-Yeup;Moon, Jae-Youn;Yoon, Kang-Jun;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.849-851
    • /
    • 2003
  • This paper is deal with the method of design for optimum thrust model using genetic algorithms in slotless Permanent Magnet Linear Synchrous Motor (PMLSM). Characteristic analysis method is used 3D space harmonic analysis method. Design parameters are PM width and coil width.

  • PDF

Compact Design of a Slotless Type PMLSM Using Genetic Algorithm with 3D Space Harmonic Method

  • Lee Dong-Yeup;Kim Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.262-266
    • /
    • 2005
  • In this paper, in order to enhance thrust of slotless type Permanent Magnet Linear Synchronous Motor, an optimal design is achieved by combining a genetic algorithm with 3D space harmonic method. In the case of multi-objective functions, the ratio of thrust/weight and thrust/volume are increased by $\7.56[%]l\;and\;7.98\[%]$, respectively. Thus, miniaturization and lightweight were realized at the same time.

The optimum for thrust force of slotless type Permanent Magnet Linear Synchronous Motor using neural network (신경회로망을 이용한 Slotless PMLSM의 추력 최적화)

  • Lee, Dong-Yeup;Moon, Jae-Youn;Jo, Sung-Ho;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.94-96
    • /
    • 2002
  • This paper is deal with the method of redesign for optimum thrust model using Neural-Networks in Permanent Magnet Linear Synchrous Motor(PMLSM). This method is saved time compared with design method using only Finite Element Method(FEM). In this paper data sets for training Neural-Networks obtained using 2D FEM. To confirm the validity of the data sets for training Neural-Networks optimum values of that Is compared with results of FEM. And then. this method is verified that it could be applied to the design for Slotless type PMLSM.

  • PDF

Detent force minimization caused by end effect of moving magnet type Slotless PMLSM (Moving magnet type Slotless PMLSM의 end effect에 의한 detent force 최소화)

  • Kim, Mi-Yong;Ha, Tae-Wook;Jung, Chun-Gil;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.33-35
    • /
    • 2003
  • This paper proposes inserted core type of slotless Permanent Magnet Linear Synchronous Motor(PMLSM) to improve its low thrust density. However, by inserting the core between windings of each phase, detent force is generated. Furthermore, linear motors have the feature of structurally limited length. So, it causes the end-effect in actual operation. So, this paper applies the neural network to this model to minimize detent force and maximize thrust. Also, sub-poles used the to the end parts of the mover for compensating the end-effect.

  • PDF