• Title, Summary, Keyword: Solid oxide fuel cell

Search Result 469, Processing Time 0.049 seconds

Cell Fabrication and Performances of SOFC prepared by DBM and SPM

  • Kim, Gwi-Yeol
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.286-288
    • /
    • 2007
  • The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of solid oxide fuel cell widely. In order to reduce production costs, we have fabricated single solid oxide fuel cell by doctor blade and screen printing method. Disk-type planar solid oxide fuel cell with an effective electrode area of about $7cm^2$ were fabricated and run for 500 h to investigate cell performance. The current density at a voltage of 0.7 V was $850mA/cm^2$.

Solid Oxide Fuel Cells Designs, Materials, and Applications

  • Singhal Subhash C.
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12
    • /
    • pp.777-786
    • /
    • 2005
  • The Solid Oxide Fuel Cell (SOFC) is an electrochemical device to convert chemical energy of a fuel into electricity at temperatures from about 600 to $1000^{\circ}C$. The SOFC offers certain advantages over lower temperature fuel cells, notably its ability to use CO as a fuel rather than being poisoned by it, and high grade exhaust heat for combined heat and power, or combined cycle gas turbine applications. This paper reviews the operating principle, materials for different cell and stack components, cell designs, and applications of SOFCs. Among all designs of Solid Oxide Fuel Cells (SOFCs), the most progress has been achieved with the tubular design. However, the electrical resistance of tubular SOFCs is high, and specific power output $(W/cm^2)$ and volumetric power density $(W/cm^3)$ low. Planar SOFCs, in contrast, are capable of achieving very high power densities.

Computational Analysis of Heat and Mass Transfer in a Planar-type Solid Oxide Fuel Cell (저온 평판형 고체산화물 연료전지 내부 열 및 물질전달 현상에 대한 전산해석)

  • Jeong, Hee-Seok;Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.648-654
    • /
    • 2005
  • The performance prediction of a planar-type solid oxide fuel ceil is conducted by a computational analysis. The transport processes are formulated with the help of a simplified treatment of heat generation by the electrochemical reaction. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer have influence on the distribution of local current density and as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB(Three-Phase-Boundary) area in the manufacturing process of electrodes in a solid oxide fuel cell.

  • PDF

Computational Analysis of Transport Phenomena in a Planar-Type Solid Oxide Fuel Cell with a Simplified Treatment of the Electrochemical Heat Generation (전기화학 반응에 의한 생성 열의 단순화된 처리 기법을 이용한 평판형 고체산화물 연료전지 내부의 이동현상에 대한 전산 해석)

  • Cha, Hoon;Sohn, Jeong-Lak;Ro, Sung-Tack
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12
    • /
    • pp.846-853
    • /
    • 2005
  • For the performance prediction of a planar-type solid oxide fuel cell, the computational analysis of transport phenomena with a simplified treatment of heat generation by the electrochemical reaction is conducted. From the result of the computational analysis, it is shown that the electrochemical reaction is closely related to the transport phenomena inside a solid oxide fuel cell. Transport phenomena including heat and mass transfer influences on the distribution of local current density and, as a result, on the performance characteristics of the fuel cell. Computational analysis is also extended to the parametric study to investigate the performance behavior of the fuel cell with different amount of supplied fuel flow rates. It is also demonstrated that the mathematical formulation and computational procedures proposed in this study can be applied to prove the importance of the specific TPB area in the manufacturing process of electrodes in solid oxide fuel cells.

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell (저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조)

  • Kang, Sangkyun;Park, Yong-Il
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12
    • /
    • pp.865-871
    • /
    • 2005
  • Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

The Crack Behavior in the Planar Solid Oxide Fuel Cell under the Fabricating and Operating Temperature (제조 및 작동온도에서 평판형 고체연료전지에 발생한 균열 거동)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.34-41
    • /
    • 2014
  • The goal of this study is to investigate some crack behaviors which affect the crack propagation angle at the planar solid oxide fuel cell with cracks under the fabricating and operating temperature and analyze the stresses by 3 steps processing on the solid oxide fuel cell. Currently, there are lots of researches of the performance improvement for fuel cells, and also for the more powerful efficiency. However, the planar solid oxide fuel cell has demerits which the electrode materials have much brittle properties and the thermal condition during the operating process. It brings some problems which have lower reliability owing to the deformation and cracks from the thermal expansion differences between the electrolyte, cathode and anode electrodes. Especially the crack in the corner of the electrodes gives rise to the fracture and deterioration of the fuel cells. Thus it is important to evaluate the behavior of the cracks in the solid oxide fuel cell for the performance and safety operation. From the results, we showed the stress distributions from the cathode to the anode and the effects of the edge crack in the electrolyte and the slant crack in the anode. Futhermore the crack propagation angle was expected according to the crack length and slant angle and the variation of the stress intensity factors for the each fracture mode was shown.

Synthesis and Characterisation of Mixed Conducting Perovskite Type Oxide and Its Electrochemical Application to Electrode Material for Solid Oxide Fuel Cell

  • Kim, Yu-Mi;Pyun, Su-Il;Lee, Gyoung-Ja;Kim, Ju-Sik
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.116-125
    • /
    • 2007
  • This article is concerned with synthesis, characterisation and electrochemical application of the mixed conducting perovskite type oxide to electrode materials for solid oxide fuel cell. First, this review provides a comprehensive survey of the various synthetic methods such as solid state reaction, Pechini, glycine nitrate process and sol-gel methods for the preparation of perovskite type oxide powders. Subsequently, the electrical and microstructural properties of the mixed conducting oxides were discussed in detail. Finally, as electrochemical applications of the mixed conducting perovskite type oxides to electrode materials for solid oxide fuel cell, fundamentals of theoretical ac-impedance model for porous mixed conducting electrodes were introduced. Furthermore, the ac-impedance behaviour of porous and dense mixed conducting electrodes prepared by various synthetic methods was discussed.

Thermal Stress Analysis on the Solid Oxide Fuel Cell according to Operating Temperature

  • Kwon, Oh-Heon;Kang, Ji-Woong;Jo, Se-Jin
    • International Journal of Safety
    • /
    • v.10 no.1
    • /
    • pp.1-4
    • /
    • 2011
  • The fuel cell is one of the green energy receiving a lot of attention. Among the fuel cells, it is generally referred to SOFC(solid oxide fuel cell) which is made up composites of a solid. SOFC has excellent merits in the side of environment and energy. However because of the high operating temperature, it has economic loss by the using of expensive materials and problems of structural instability by thermal stresses. Therefore, this study aims to the effect of analysis by the FEMLAB. The results have deformations and the maximum stresses from the variation of the thickness of vulnerability spots. The deformation shows expansion as 0.82% and the stress ${\sigma}_{xx}$ is 392MPa in electrolyte and -56.31MPa in anode. When increasing or decreasing the thickness to 50% of the reference thickness about the electrolyte which is vulnerable spots.

  • PDF

Solid Oxide Fuel Cells for Power Generation and Hydrogen Production

  • Minh, Nguyen Q.
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Solid oxide fuel cells (SOFCs) have been under development for a variety of power generation applications. Power system sizes considered range from small watt-size units (e.g., 50-W portable devices) to very large multi-megawatt systems (e.g., 500-MW base load power plants). Because of the reversibility of its operation, the SOFC has also been developed to operate under reverse or electrolysis mode for hydrogen production from steam (In this case, the cell is referred to as solid oxide electrolysis cell or SOEC.). Potential applications for the SOEC include on-site and large-scale hydrogen production. One critical requirement for practical uses of these systems is long-term performance stability under specified operating conditions. Intrinsic material properties and operating environments can have significant effects on cell performance stability, thus performance degradation rate. This paper discusses potential applications of the SOFC/SOEC, technological status and current research and development (R&D) direction, and certain aspects of long-term performance degradation in the operation of SOFCs/SOECs for power generation/hydrogen production.