• Title, Summary, Keyword: Solid state electrolyte

Search Result 173, Processing Time 0.036 seconds

Quasi-Solid-State Hybrid Electrolytes for Electrochemical Hydrogen Gas Sensor

  • Kim, Sang-Hyung;Han, Dong-Kwan;Hong, SeungBo;Jeong, Bo Ra;Park, Bok-Seong;Han, Sang-Do;Kim, Dong-Won
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.294-301
    • /
    • 2019
  • The quasi-solid-state hybrid electrolytes were synthesized by chemical cross-linking reaction of methacrylate-functionalized $SiO_2$ ($MA-SiO_2$) and tetra (ethylene glycol) diacrylate in aqueous electrolyte. A quasi-solid-state electrolyte synthesized by 6 wt.% $MA-SiO_2$ exhibited a high ionic conductivity of $177mS\;cm^{-1}$ at room temperature. The electrochemical $H_2$ sensor assembled with quasi-solid-state electrolyte showed relatively fast response and high sensitivity for hydrogen gas at ambient temperature, and exhibited better durability and stability than the liquid electrolyte-based sensor. The simple construction of the sensor and its sensing characteristics make the quasi-solid-state hydrogen sensor promising for practical application.

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

Lithium Lanthanum Titanate Solid Electrolyte for All-Solid-State Lithium Microbattery (전고상박막전지를 위한 (Li,La)TiO3 고체전해질의 제조와 특성)

  • 안준구;윤순길
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.9
    • /
    • pp.930-935
    • /
    • 2004
  • $({Li}_{0.5}0{La}_{0.5}){TiO}_3$ (LLTO) solid electrolyte was grown on LiCo{O}_2 (LCO) cathode films deposited on $Pt/Ti{O}-2/Si{O}_2/Si$ substrate using pulsed laser deposition for all-solid-state lithium microbattery. LLTO solid electrolyte exhibits an amorphous phase at various deposition temperatures. LLTO films deposited at 10$0^{\circ}C$ showed a clear interrace without any chemical reaction with LCO, and showed an initial discharge capacity of 50 $\mu$Ah/cm$^2$-$\mu$m and capacity retention of 90 % after 100 cycles with Li anode in 1mol$ LiCl{O}_4$ in propylene carbonate (PC). The increase of capacity retention in LLTO/LCO structure than LCO itself was attributed to the structural stability of LCO cathode films by the stacked LLTO. The cells of LLTO/LCO with LLTO grown at $100^{\circ}C$ showed a good cyclic property of 63.6 % after 300 cycles. An amorphous LLTO solid electrolyte is possible for application to solid electrolyte for all-solid-state lithium microbattery.

All Solid State Electrochromic (전 고체형 일렉트로크로믹 소자)

  • 채종우;조봉희;김영호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.295-298
    • /
    • 1996
  • In this study, we have fabricated all solid state electrochromic devices using WO$_3$ film as the working electrode, V$_2$O$\_$5/ film as the counter electrode and PEO-LiClO$_4$-PC film as the solid electrolyte. The WO$_3$ thin films for working electrode and V$_2$O$\_$5/ thin films for counter electrode were deposited onto ITO glass by vacuum evaporation and were shown good electrochromic and state properties after 1x10$\^$5/ cycles. PEO-LiClO$_4$-PC polymer electrolyte can easily be formed into thin films, do not absorb in the visible region of the light. Therefore, such electrolyte have electrochromic properties suitable for large-scale all solid-state electrochromic devices. All solid-staeelectrochromic devices fabricated in this polymer electrolyte have optical modulation of 20%∼30% at 1.5 V.

  • PDF

Composite Cathode Material Using Spark Plasma Sintering for Bulk-Type Hybrid Solid-State Batteries

  • Woo, Sung Pil;Lee, Wooyoung;Yoon, Young Soo
    • Journal of the Korean Physical Society
    • /
    • v.73 no.7
    • /
    • pp.1019-1024
    • /
    • 2018
  • A Composite cathode without polymer binder was prepared by a one-step sintering method employing spark plasma sintering (SPS) of laminated $LiCoO_2$ and $Li_3BO_3$ pellets. The amorphous $Li_3BO_3$ solid electrolyte melted during the sintering process. For better characterization of the composite cathode, a liquid electrolyte was used in the battery test. However, the active material was mainly in the all-solid-state environment. The specific capacity of the composite cathode was found to be dependent on its thickness. The 0.2 mm thick composite cathode showed a high specific discharge capacity of $99\;mAh\;g^{-1}$ at 0.5 C rate, excellent cycling performance over 10 cycles, and good rate capability of about $93.2\;mAh\;g^{-1}$ with 94% retention capacity. In addition, the composite cathode showed an initial discharge capacity of $0.25\;mAh\;g^{-1}$. The discharge capacity after 3 cycles under the all-solid-state condition was $0.22\;mAh\;g^{-1}$. The SEM and TEM results showed that the melted $Li_3BO_3$ solid electrolyte synthesized by the SPS process produced Li+ ion transport pathways, which reduced the grain boundary resistance. Hence, this composite cathode consisting of $LiCoO_2$ as the cathode, amorphous $Li_3BO_3$ as the solid electrolyte, and MWCNT as the electric conductor is a promising material for all-solid-state batteries and bulk-type hybrid solid-state batteries.

Preparations and Photovoltaic Properties of Dye-Sensitized Solar Cells Using Polymer Electrolytes (고분자 전해질을 이용한 염료감응형 태양전지의 제작과 광기전 특성)

  • Kim, Mi-Ra;Shin, Won-Suk;Jin, Sung-Ho;Lee, Jin-Kook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • /
    • pp.175-178
    • /
    • 2006
  • Solid-state dye-sensitized solar cells were fabricated using a polymer matrix in electrolyte in the purpose of the improvement of the durability in the dye-sensitized solar cell. In these dye-sensitized solar cells, the polymer electrolyte consisting of $I_2$, LiI, ionic liquid, ethylene carbonate/propylene carbonate and polymer matrix was casted onto $TiO_2$ electrode impregnated Ruthenium complex dye as a photosensitizer. Photovoltaic properties of solid-state dye-sensitized solar cells using polymer matrix (PMMA, PEG, or PAN) were investigated. Comparing photovoltaic effects of cells using hole conducting polymers (BE or 6P) instead of polymer matrix, we investigated the availability of the solid-state polymer electrolyte in dye-sensitized solar cells.

  • PDF

Characterization of Copper Saturated-$Ge_xTe_{1-x}$ Solid Electrolyte Films Incoperated by Nitrogen for Programmable Metalization Cell Memory Device

  • Lee, Soo-Jin;Yoon, Soon-Gil;Yoon, Sung-Min;Yu, Byoung-Gon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.174-175
    • /
    • 2007
  • A programmable metallization cell (PMC) memory structure with copper-saturated GeTe solid electrolyte films doped by nitrogen was prepared on a TiW bottom electrode by a co-sputtering technique at room temperature. The $Ge_{45}Te_{55}$ solid electrolyte films deposited with various $N_2$/Ar flow ratios showed an increase of crystallization temperature and especially, the electrolyte films deposited at $N_2$/Ar ratios above 30% showed a crystallization temperature above $400^{\circ}C$, resulting in surviving in a back-end process in semiconductor memory devices. The device with a 200 nm thick $Cu_{1-x}(Ge_{45}Te_{55})_x$ electrolyte switches at 1 V from an "off " state resistance, $R_{off}$, close to $10^5$ to an "on" resistance state, Ron, more than 20rders of magnitude lower for this programming current.

  • PDF

Resistive Switching Characteristics of Ag Doped Ge0.5Se0.5 Solid Electrolyte

  • Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.478-478
    • /
    • 2013
  • Resistance-change Random Access Memory (ReRAM) memory, which utilizes electrochemical control of metal in thin films of solid electrolyte, shows great promise as a future solid state memory. The technology utilizes the electrochemical formation and removal of metallic pathways in thin films of solid electrolyte. Key attributes are low voltage and current operation, excellent scalability, and a simple fabrication sequence. In this work, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of Resistance-change RAM devices and switching characteristics.

  • PDF

Characterization of RF Sputter-deposited Sodium Phosphorous Oxynitride Thin Films as a Solid-state Sodium-ion Conductor

  • Chun, Sang-Eun
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.4
    • /
    • pp.237-243
    • /
    • 2017
  • We demonstrated the thin film deposition of sodium phosphorous oxynitride (NaPON) via RF magnetron sputtering of $Na_3PO_4$, as a solid-state Na-ion conductor similar to lithium phosphorous oxynitride (LiPON), which is a commonly used solid electrolyte. The deposited NaPON thin film was characterized by scanning electron microscopy, X-ray diffractometry, and electrochemical impedance spectroscopy, to investigate the feasibility of the solid-state electrolyte in several different cell configurations. The key properties of a solidstate electrolyte, i.e., ionic conductivity and activation energy, were estimated from the complex non-linear least square fitting of the measured impedance spectra at various temperatures in the range of $27-90^{\circ}C$. The ionic conductivity of the NaPON film was measured to be $8.73{\times}10^{-6}S\;cm^{-1}$ at $27^{\circ}C$, which was comparable to that of the LiPON film. The activation energy was estimated to be 0.164 eV, which was lower than that of the LiPON film (0.672 eV). The obtained values encourage the use of a NaPON thin film in the future as a reasonable solid-state electrolyte.

Performance of EMIMFSI ionic liquid based gel polymer electrolyte in rechargeable lithium metal batteries

  • Balo, Liton;Gupta, Himani;Singh, Shishir Kumar;Singh, Varun Kumar;Kataria, Shalu;Singh, Rajendra Kumar
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.65
    • /
    • pp.137-145
    • /
    • 2018
  • Flexible gel polymer electrolytes based on polymer polyethylene oxide, salt lithium bis(fluorosulfonyl) imide and ionic liquid 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide are synthesized. Prepared samples show high thermal stability, high ionic conductivity at room temperature and an electrochemical stability window of ~3.51V vs. $Li/Li^+$. Lithium deposition-striping voltage profiles show the formation of a stable solid electrolyte interface. A $Li/GPE/LiFePO_4$ cell was assembled by low cost thermal lamination technique. This cell can deliver $143mAh\;g^{-1}$ capacity at room temperature at C/20 rate with good discharge efficiency. Use of micro grid mesh type Al current collector in cathode exhibits significant improvement in capacity retention.