• Title, Summary, Keyword: Soot radiation

Search Result 45, Processing Time 0.04 seconds

Combustion Characteristics and Soot Formation in a Jet Diffusion Flame (제트 확산화염의 연소특성과 매연생성에 관한 연구)

  • 이교우;백승욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2712-2723
    • /
    • 1994
  • Numerical simulation of an axisymmetric ethylene-air jet diffusion flame has been carried out in order to investigate flame dynamics and soot formation. The model solves the time-dependent Navier-Stokes equations and includes models for soot formation, chemical reaction, molecular diffusion, thermal conduction, and radiation. Numerically FCT(Flux Corrected Transport) and DOM(Discrete Ordinate Method) methos are used for convection and radiation trasport respectively. Simulation was conducted for a 5 cm/sec fuel jet flowing into a coflowing air stream. The maximum flame temperature was found to be approximately 2100 K, and was located at an axial position of approximately 5 cm from the base of the flame. The maximum soot volume fraction was about $7{\times}10^{-7}$, and was located within the high temperature region where the fuel mole fraction ranges from 0.01 to 0.1. The buoyancy-driven low-frequency(12~13 Hz) structures convected along the outer region of the flame were captured. In case without radiation trasport, the maximum temperature was higher by 150 K than in case with radiation. Also the maximum soot volume fraction reached about $8{\times}10^{-6}$. As the the hydrocarbon fuel forms many soot particles, the radiation transport becomes to play a more important role.

Soot Formation and Oxidation of an Ethylene Laminar Diffusion Flame with Different Radiation Boundary Conditions (에틸렌 층류 확산화염의 복사경계조건에 따른 매연생성 및 산화특성)

  • Lee, Chun-Beom;Nam, Youn-Woo;Lee, Won-Nam;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.11-18
    • /
    • 2003
  • The soot formation and oxidation characteristics with different radiation boundary conditions have been studied experimentally in a co-flow ethylene/air laminar diffusion flame. The boundary conditions are two cases, one is a fully refractive radiation boundary condition by a polished aluminum cylinder(AL) and the other is a fully absorbing radiation boundary condition by a black body cylinder(BB). The AL case compared with BB condition show the lower inception point, denser soot volume fraction, wider and longer annular soot area owing to the reabsorption of radiating energy.

  • PDF

Combustion and Radiation Characteristics of Oxygen-Enhanced Inverse Diffusion Flame

  • Hwang, Sang-Soon;Gore, Jay-P
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1156-1165
    • /
    • 2002
  • The characteristics of combustion and radiation heat transfer of an oxygen-enhanced diffusion flame was experimentally analyzed. An infrared radiation heat flux gauge was used to measure the thermal radiation of various types of flames with fuel, air and pure oxygen. And the Laser Induced Incandescence (LII) technique was applied to characterize the soot concentrations which mainly contribute to the continuum radiation from flame. The results show that an oxygen-enhanced inverse diffusion flame is very effective in increasing the thermal radiation compared to normal oxygen diffusion flame. This seems to be caused by overlapped heat release rate of double flame sheets formed in inverse flame and generation of higher intermediate soot in fuel rich zone of oxygen-fuel interface, which is desirable to increase continuum radiation. And the oxygen/methane reaction at slight fuel rich condition (ø=2) in oxygen-enhanced inverse flame was found to be more effective to generate the soot with moderate oxygen availability.

Predictions on the Flame Structure and Soot Distribution in the Coflowing Laminar Diffusion Flames (동층류 축대칭 확산화염내의 화염구조 및 매연입자 분포의 예측)

  • 이정기;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.8
    • /
    • pp.1583-1594
    • /
    • 1992
  • A numerical calculation on the flame structure and soot particle distribution in a coannular laminar diffusion flame was performed. Flame analysis model utilized basically flame sheet concepts, Shvab-Zel'dovich assumption, and one step overall irreversible reaction. It was also considered the variation of thermodynamics and transport properties, and the stagnation enthalpy was used for solving temperature field. Radiation was taken into account, since it has been found to be important in determining the flame temperature in sooty flames. For soot particle analysis, we adopted the coagulation, suface condensation, and the oxidation model in addition to tesner's two-step formation model. Equations for primary soot particle excluding the agglomeration process were solved. Based on the results, the regions of soot generation, growth, and oxidation in the flame have been observed and radiation strongly influenced flame temperature and soot distribution.

Soot Temperature and Concentration Measurement Using Emission/Transmission Tomography in Laminar Diffusion Flame (방사와 투과를 이용한 층류확산화염내 매연입자의 온도 및 농도 측정)

  • 송상종;박성호;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2563-2573
    • /
    • 1993
  • The measurements of monochromatic line-of-sight flame emission and light transmission in the same path having small spatial resolution were performed in an axisymmetric laminar propane $C_{3}H_{8}$ diffusion flame. The light wavelengthes of 632 nm, 800nm, 900nm were used. From these measurements, local point soot radiances (by Kirchhoff's law) and absorption coefficients were reconstructed by tomography. Thus local point soot temperatures and concentrations were obtained. The reconstructed soot temperatures and concentrations of local points have no differences between the case of visible range (632 nm) and the case of infrared range (800 nm and 900 nm). In these ranges, the scattering coefficient is much lower than the absorption coefficient. Soot mean temperature over the path also matches well with local soot temperature in outer region of the flame. Temperature measurement by thermocouple with different bead diameters $(222{\mu}m and 308{\mu}m)$ was carried in the same flame. Rapid insertion technique was used and radiation effect was considered. Radiation correction in the sooting region was carried out and the corrected result was in good agreement with the local soot temperature.

A Prediction of Infrared Spectrum of Rocket Plume with Considering Soot Particles (Soot 입자를 고려한 로켓 플룸의 적외선 스펙트럼 예측)

  • Jo, Sung Min;Nam, Hyun Jae;Kim, Duk Hyun;Kwon, Oh Joon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.4
    • /
    • pp.24-36
    • /
    • 2015
  • In the present study, numerical predictions of infrared spectrum of rocket plume with considering effect of particles based on approximation theories were performed by using a line-by-line radiation model with radiation databases. The high-resolution radiation databases were used to predict thermal emission spectra of gas molecules within the rocket plume regime. The particles were modeled as soot particles by using 1st term approximation of Mie theory and Rayleigh approximation. The reliability of modeled effect of soot particles using the two approximation theories was verified, and the spectral radiance of rocket plume was predicted based on the verification. The results were improved in the short wavelength range by considering the effect of soot particles.

Soot Formation Characteristics on the Instability of Laminar Diffusion Flames (층류확산화염의 불안정성에 대한 매연생성 특성의 역할)

  • Nam, Youn-Woo;Lee, Won-Nam
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.3
    • /
    • pp.74-81
    • /
    • 2010
  • In this study, soot formation characteristics on the instability of laminar diffusion flames were investigated experimentally using a concentric co-flow burner. When a small amount of air was supplied through an inner nozzle, a stable propane laminar diffusion flame became unstable and began to oscillate mainly due to the dilution effect. The increase of air flow rate transformed an oscillating non-sooting flame into a stable nonsooting flame. When the air flow rate was continuously increased an inner flame was formed and the flame was changed to an oscillating sooting flame, an oscillating non-sooting flame and finally a stable non-sooting hollow flame. When the air flow rate was decreased, a non-sooting hollow flame was eventually changed back to a stable non-sooting flame. The presence of an inner flame, however, altered the soot formation characteristics of a flame. More soot production was observed with the presence of an inner flame. The increased or decreased soot formation/oxidation rates, the radiation heat loss, and the heating effect of inner flames are most likely to be responsible for the observed instability of laminar diffusion flames.

Measurement of Soot and Temperature on Bio Diesel Flame by Two-Color Method (이색법에 의한 바이오 디젤화염의 그을음과 온도 측정)

  • Kim, M.S.;Kang, H.Y.
    • Journal of the Korea Society For Power System Engineering
    • /
    • v.16 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • There were some papers for diesel engine performance tests using BDF, but few article deals with the temperature and soot concentration of Bio diesel flame. Since the flame temperature of diesel engines is so high and change rapidly, an optical method for measurement of flame temperature is known as the most effective one. The two-color method regarding the visible wavelength radiation for the soot particles in flame was applied on Bio diesel flame in order to measure flame temperature and soot concentration in a diesel engine. Photo detecting device was newly designed and employed TSL250R, photo-diode, to pick-up the light information emitted from the combustion flame. As a result, real flame temperature T, as a flame brightness temperature, through Ta1, Ta2, were obtained and finally the characteristics of KL value as a soot concentration reveal the difference of combustion information between diesel fuel, blending oil and Bio diesel fuel oil.

Development of Oxygen Combustion Burner for Industrial Gasification and Smelting Furnace (산업용 가스화 용융로를 위한 산소 버너의 개발)

  • Bae, Soo-Ho;Lee, Uen-Do;Shin, Hyun-Dong;Kim, Soung-Hyoun;Gu, Jae-Hoi;Yoo, Young-Don
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.170-178
    • /
    • 2005
  • Multi-hole type oxygen combustion burner was developed for industrial gasification and smelting furnace. We investigated characteristics of flame, radiation transfer, and soot emission in the convectional oxygen burner with respect to the feeding condition of fuel and oxygen. Regarding the results of the conventional burner, we designed new burners which have larger fuel consumption rate and radiation heat transfer. We changed the size and hole number and shape of the exit plane of the burner. In addition, the performance of the burner was tested with respect to the feeding condition of the fuel and air: Normal Diffusion flame(NDF) and Inverse Diffusion Flame(IDF). We investigated the flame configuration, radiation heat transfer, and soot formation by using a CCD camera, heat flux meter, and Laser Induced Incadescence(LII), respectively. The stable operating condition was obtained by the flame configuration and the flame of the burner which has dented exit plane was more stable in whole operating conditions. The characteristics of radiative heat transfer were sensitive to the feeding condition of reactants and the flame of 75% primary oxygen and 25% secondary oxygen of the IDF case shows maximum radiation heat transfer. The soot volume fraction of the flame was measured in the axial direction of the flame and the amount of soot volume fraction is proportion to the radiation heat transfer. As a result, we can get the optimal operating condition of the newly designed burner which enhances the characteristics of flame stabilization and radiation heat transfer.

  • PDF

Numerical Study of PAH Formation Characteristics in Laminar Non-Premixed C2H4 Jet Flames (층류 비예혼합 C2H4 제트 화염장에서의 PAH 생성특성 해석)

  • Kim, Taehoon;Kim, Yongmo
    • 한국연소학회:학술대회논문집
    • /
    • /
    • pp.133-134
    • /
    • 2014
  • The full transport equation approach for laminar non-premixed flame with detailed chemistry, soot and radiation has an advantage in accuracy and describing for emission pathway, but this approach requires the excessive computational cost especially for a higher-order hydrocarbon fuel flames. On the other hand, the standard flamelet model has an efficiency and accuracy for non-premixed flame, though this model is not suitable for simulating slow processor like soot and radiation in laminar non-premixed flame situation. To overcome this limitation, modified transient flamelet model is developed which coupled with two-equation soot model involved in soot formation and evolution mechanism such as nucleation, surface growth, oxidation and agglomeration.

  • PDF