By introducing additional nodes called Steiner points, the problem of Steiner Minimum Tree whose length can be shorter than Minimum Spanning Tree and which connects all input terminal nodes belongs to Non-Polynomial Complete domain. Though diverse heuristic methods can be applied to the problem, most of them may meet serious pains in computing and waiting for a solution of the problem with numerous input nodes. For numerous input nodes, an efficient PTAS approximation method producing candidate unit steiner trees with portals in most bottom layer, merging them hierarchically to construct their parent steiner trees in upper layer and building swiftly final approximation Steiner tree in most top layer is suggested in this paper. The experiment with 16,000 input nodes and designed 16 unit areas in most bottom layer shows 85.4% execution time improvement in serial processing and 98.9% in parallel processing comparing with pure Steiner heuristic method, though 0.24% overhead of tree length. Therefore, the suggested PTAS Steiner tree method can have a wide range applications to build a large scale approximation Steiner tree quickly.