• Title, Summary, Keyword: Storage System

Search Result 6,204, Processing Time 0.053 seconds

The Allocation Planning of Storage Location in a Dedicated Storage Method Warehuse System (지정식 보관방식 창고시스템에서 보관위치 할당계획)

  • Chang, Suk-Hwa
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • This paper addresses the allocation planning of the storage location in a warehouse system that the dedicated storage method is used. In the discrete finite time period model, the demands for storage location of products are dynamic for time periods. The planning is to determine the reallocation time period and the storage location of the products in reallocation time period, which minimizes costs. The cost factors are the reallocation cost, the travel cost within warehouse and the surplus storage location cost. A model is formulated, and the property of optimal solution is characterized. The dynamic programming algorithm is developed, and a numerical example is shown.

Seismic Design for Application of LNG Storage Tank Isolation System (LNG 저장탱크의 면진시스템 적용을 위한 내진설계)

  • Seo, Ki-Young;Park, Hyun-Jae;Kim, Nam-Sik;Kim, Jae-Min;Yang, Seong-Yeong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.3
    • /
    • pp.227-235
    • /
    • 2014
  • The demand of natural gas is gradually increasing as a clean fuel in the world. Therefore, LNG storage tanks and related facilities of the importance of leading a community-based facility have emerged. The seismic design of LNG storage tank including seismic analysis have been developed steadily. But, the seismic analysis and design techniques for LNG storage tanks are lacking, in Korea. Consequently, it is necessary to develop an analysis model that LNG storage tanks in isolation system can describe the behavior. Further, LNG storage tank capable of ensuring safety and economy, it is necessary to develop design techniques. The studies have suggested seismic design procedures of LNG storage tanks with isolation system including triple-FPB and idealized complex hysteresis model of triple-FPB.

Floor Heating Characteristics of Latent Heat Storage - Bioceramic Ondol - Focused on Theoretical Analysis - (잠열 축열 - 바이오 세라믹 온돌의 난방 특성 - 이론적 분석을 중심으로 -)

  • 송현갑;유영선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • /
    • pp.213-222
    • /
    • 1995
  • Korean traditional Ondol with the sensible heat storage medium has been for a long time used as residential heating system, in these days the concrete Ondol without the heat storage medium was realized as the heating system in the private houses and the apartments. This floor heating system is good for our health. But the concrete Ondol is not desirable for the energy saving and for the maintenance of comfortable room temperature because the heat storage medium is not employed in the concrete Ondol. And as the hot water circulating pipes ate buried under the the concrete floor, the concrete Ondol system has some kind of problems to be improved. Therefore the new type of Ondol system was developed in this study. And the new Ondol was consisted of latent heat storage material as heat storage medium with a great heat capacity and bioceramics as medium to maintain comfortable room temperature. In this study, the heat transfer characteristics of latent heat storage-bioceramic Ondol was analyzed theoretically.

  • PDF

An Optimal Approach to Rotational Vibration Suppression using Disturbance Observer in Disk Drive Systems

  • Park, Sung-Won;Kim, Nam-Guk;Chu, Sang-Hoon;Kang, Chang-Ik;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.5-12
    • /
    • 2007
  • This paper investigates the design of disturbance observer for rotational vibration suppression in disk drive systems. The design aims to provide an optimal controller which satisfies both vibration performance and robust stability. It consists of an inversion method, a special filter, and optimization scheme. Firstly a new inversion method is introduced, which provides more accurate inversion compared to conventional zero phase error method. The inversion is to deal with unstable zeros in the plant model. Secondly a special filter for disturbance selection is given, which features adjustable gain and band pass characteristics so that it enables flexible shaping of the loop considering the trade-off between performance and stability margins. And finally the parameters of disturbance observer are optimized in conjunction with external disturbance model. Simulation and experiment on commercial hard disk drives confirm that the design is very effective to such disturbance which is hard to be handled by conventional approach.

  • PDF

Implementation of Hardware RAID and LVM-based Large Volume Storage on Global Data Center System of International GNSS Service

  • Lee, Dae-Kyu;Cho, Sung-Ki;Park, Jong-Uk;Park, Pil-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.1553-1557
    • /
    • 2005
  • High performance and reliability of the storage system to handle a very large amount of data has been become very important. Many techniques have been applied on the various application systems to establish very large capacity storage that satisfy the requirement of high I/O speed and physical or logical failure protection. We applied RAID and LVM to construct a storage system for the global data center which needs a very reliable large capacity storage system. The storage system is successfully established and equipped on the latest Linux application server.

  • PDF

Design of a renewable energy system with battery and power-to-methanol unit

  • Andika, Riezqa;Kim, Young;Yun, Choa Mun;Yoon, Seok Ho;Lee, Moonyong
    • The Korean Journal of Chemical Engineering
    • /
    • v.36 no.1
    • /
    • pp.12-20
    • /
    • 2019
  • An energy storage system consisting of a battery and a power-to-methanol (PtM) unit was investigated to develop an energy storage system for renewable energy systems. A nonlinear programming model was established to optimize the energy storage system. The optimal installation capacities of the battery and power-to-methanol units were determined to minimize the cost of the energy system. The cost from a renewable energy system was assessed for four configurations, with or without energy storage units, of the battery and the power-to-methanol unit. The proposed model was applied to the modified electricity supply and demand based on published data. The results show that value-adding units, such as PtM, need be included to build a stable renewable energy system. This work will significantly contribute to the advancement of electricity supply and demand management and to the establishment of a nationwide policy for renewable energy storage.

An Economic Evaluation under Thailand Feed in Tariff of Residential Roof Top Photovoltaic Grid Connected System with Energy Storage for Voltage Stability Improving

  • Treephak, Kasem;Saelao, Jerawan;Patcharaprakiti, Nopporn
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.120-128
    • /
    • 2015
  • In this paper, Residential roof top photovoltaic system with 9.9 kW design is proposed. The system composed of 200 Watts solar array 33 panels connecting in series 10 strings and parallels 3 strings which have maximum voltage and current are 350 V and 23.8 A. The 10 kW sinusoidal grid-connected inverter with window voltage about 270-350 is selected to convert and transfer DC Power to AC Power at PCC (Point of Common Coupling) of power system following to utility standard. However the impact of fluctuation and uncertainty of weather condition of PV may decrease the voltage stability and voltage collapse of power system. In order to solve this problem the energy storage such 120 V 1200 Ah battery bank and 30 kVAR capacitor are designed for voltage stability control. The other expensed for installing the system such battery charger, cable, accessories and maintenance cost are concerned. The economic analysis by using investment from money loan with interest about 7% and use own money which loss income of deposit about 3% are calculated as 671,844 and 547,044 for PV system with energy storage and non energy storage respectively. The solar energy from PV is about 101,616 Bath per year which evaluated by using the value of $5kWh/m^2/day$ from average peak sun hour (PSH) of the Thailand and 6.96 Bath/kWh of Feed in Tariff Incentive. The payback periods of four scenarios are proposed follow as i) PV system with energy storage and use loan money is 15 years ii) PV system with no energy storage and use loan money is 10 years iii) PV system with energy storage and use deposit money is 9 years iv) PV system with energy storage and use deposit money is 7 years. In addition, the other scenarios of economic analysis such no FIT support and other type of economic analysis such NPV and IRR are proposed in this paper.

Thermal Energy Storage and Release Characteristics of the Soil in the Greenhouse Equipped with Heat Pump and Latent Heat Storage System (열펌프-잠열축열 시스템 온실에서 토양의 열저장 및 방열 특성)

  • 노정근;송현갑
    • Journal of Biosystems Engineering
    • /
    • v.27 no.1
    • /
    • pp.39-44
    • /
    • 2002
  • In order to obtain the information of bio-environment control, the thermal characteristics of soil in the greenhouse heated by the heat pump and latent heat storage system were experimentally analyzed. The experimental systems were composed of the greenhouse with a heat pump and a latent heat storage system (system I), the greenhouse with a heat pump (system II), the greenhouse with a latent heat storage system (system III), and the greenhouse without auxiliary heating system (system IV). The thermal characteristics experimentally analyzed in each system were temperature of soil layers, soil heat storage and release, soil heat capacity and soil heat storage ratio. The results could be summarized as follows. 1. Time to reach the highest temperature at 20cm deep in soil layers of the crop routs in case of system I was shown to be delayed by 6 hours in comparison to the time of the highest temperature at the soil surface. 2. In the clear winter days, the stored heat capacity values fur the system I and the system II were shown to be 22.3% and 11.0% higher than the released heat capacity respectively, and the stored heat capacity values for the system III and the system IV were shown to be 6.2% and 29.6% lower than the released heat capacity respectively This confirms that the system I provided the best heat storage effect. j. The heat quantity values stored or released were shown to be highest at 5 cm depth of soil layers. And it was reduced with increasing of depth of soil layers until 20 cm and was not changed under the soil layer of 20 cm depth. 4. The heat absorption rates of soil, the ratio between supplied and stored heat energy, fur both the system I and system II were lower than 23%.

Economic Analysis of Energy Storage System for power system (전력계통에 설치되는 에너지 저장장치의 경제성 분석)

  • Choi, Joon-Young;Lee, Jong-Hyun;Ahn, Jong-Wook;Ko, Won-Suk;Hong, Jun-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • /
    • pp.92-96
    • /
    • 2009
  • In this paper, economic analysis of Energy Storage System for power system is performed. Economic analysis is performed to show the benefits of Energy Storage System. Results illustrate the advantages of Energy Storage System not only acting as an alternative generation resource but also giving a better reliability and stability in power system.

  • PDF

Development of Solar Energy-Underground Latent Heat Storage System for Greenhouse Heating (온실(溫室) 난방(暖房)을 위한 태양열(太陽熱)-지하(地下) 잠열(潛熱) 축열(蓄熱) 시스템 개발(開發))

  • Song, H.K.;Ryou, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.3
    • /
    • pp.211-221
    • /
    • 1994
  • In this study, to maximize the solar energy utilization for greenhouse heating during the winter season, solar energy-underground latent heat storage system was constructed, and the thermal performance of the system has been analyzed to obtain the basic data for realization of greenhouse solar heating system. The results are summarized as follows. 1. $Na_2SO_4{\cdot}10H_20$ was selected as a latent heat storage material, its physical properties were stabilized and the phase change temperature was controlled at $13{\sim}15^{\circ}C$. 2. Solar radiation of winter season was the lowest value in December, and Jinju area was the highest and the lowest value was shown in Jeju area. 3. The minimum inner air temperature of greenhouse with latent heat storage system(LHSS) was $7.0{\sim}7.5^{\circ}C$ higher than that of greenhouse without LHSS and was $7.0{\sim}11.2^{\circ}C$ higher than the minimum ambient air temperature. 4. Greenhouse heating effect of latent heat storage system was getting higher according to the increase of solar radiation and was not concerned with the variation of minimum ambient air temperature. 5. The relative humidity of greenhouse with latent heat storage system was varied from 50 to 85%, but that of greenhouse without LHSS was varied from 30 to 93%. 6. The heating cost of greenhouse with solar energy-latent heat storage system was about 24% of that with the kerosene heating system.

  • PDF