• Title, Summary, Keyword: Stream water

Search Result 3,098, Processing Time 0.042 seconds

Study in the integrated watershade management for conservation of water resources(I) - Water Quality distribution and Environmental capacity of the Samchog Buk stream, Oship stream, Gagog stream nearby eastern coastal - (수자원 보전을 위한 유역통합관리 방안에 관한 연구(I) - 동해안 유역의 북천, 오십천, 가곡천 수계의 수질 및 환경용량 평가)

  • 허인량;정의호;권재혁
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.51-60
    • /
    • 2002
  • Concerning the water quality management plan about Buk-stream, Ohsip-stream and Gagok-stream water systems in this research, which objectives of abstract is as follows. The result of cleanness degree evaluation of water quality in this research, the first grade was 91% shared in Buk-stream water system. The most point of the middle and upper stream of Buk-stream was maintain extremely clean water quality. Among the researched water system, the first grade of water quality in Ohsip-stream water system was most poor, its first garde rate was 68%. In all water quality check point of Gagog-stream water system was accomplished extremely clean water quality condition of first grade of BOD. The calculation result of pollutant loading density, which were 8.2, 21.5, 4.0kg/day.$\textrm{km}^2$. respectively and basin of Buk-stream and Gagok-Stream have high development potentiality.

Estimation of Baseflow Discharge through Several Streams in Jeju Island, Korea (제주도 주요하천의 기저유출량 산정)

  • Moon Duk-Chul;Yang Sung-Kee;Koh Gi-Won;Park Won-Bae
    • Journal of Environmental Science International
    • /
    • v.14 no.4
    • /
    • pp.405-412
    • /
    • 2005
  • Groundwater in Jeju Island, flowing through main stream, is spring water from underground. To set a fixed quantity of groundwater flowing from surface in a hydrological view, 4 downstream (Woedo stream, Gangjung stream, Yeonwoe stream and Ongpo stream) were selected to calculate the characteristic of baseflow and the base-flow discharge through the data on tachometry. There were 11 to 14 level peak caused by runoff, mostly occurred during monsoon season. Also, duration of runoff was 15 to 25 hours, well reflecting the characteristic of inclined, short stream length in Jeju Island and pervious hydrogeographical feature. In case of Gangjung stream, Yeonwoe stream and Ongpo stream, variation of stream water level by baseflow rose above during summer, which was closely linked to the distribution of seasonal precipitation. From autumn to spring, water level fell below while that of Woedo stream remained the same all year round. Data on the water level observed in Woedo stream and Gangjung stream in every single minutes was applied to weir formula(equation of Oki and Govinda Rao) to calculate baseflow discharge. Also, using the data on current and water level calculated in Ongpo stream and Yeonwoe stream, water level-water flow rating was applied to assess base flow discharge.

A Study on Mathematical Model for Water Quality Forecasting at Anyang Stream (안양시 관내하천 수질모형 예측에 관한 연구)

  • Kim, Gab-Jin;Lee, Yang-Kyoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.112-123
    • /
    • 1997
  • The Anyang stream is one of the Han river in Seoul Metropolitan area. It is 35.1km long, has a basin area of $282.26km^2$ and touches seven cities of Kyounggido and some of Seoul Metropolitan area. The situations of Anyang stream have resulted in severe stream water pollution problems. The purpose of this study were to measure the hydraulic characteristics and water quality, to make the countermeasures to achieve the stream water quality, to suggest the future conditions to improve water quality trough the Hydrodynamic and Water Quality Modal(WASP4). As the result of Anyang stream water quality forecsat, they are follows. Sewerage systems in the watershed of the Anyang stream have to be amended for wrong systemn and constructed in the upstream area of Anyang. The discharge of industrial wastewater has to be throughly controlled from the upstream area of the Anyang stream. Hydrodynamic and Water Quality Model(WASP4) for this study revealed the future water quality of the Anyang stream by computer simulation.

  • PDF

Study in the integrated watershade management for conservation of water resources (II) - Water quality modeling and simulation of Oship stream - (수자원 보전을 위한 유역통합관리 방안에 관한 연구(II) - 오십천 수계의 수질모델링 및 수질 예측 -)

  • 허인량;정의호;권재혁
    • Journal of Environmental Health Sciences
    • /
    • v.28 no.2
    • /
    • pp.61-69
    • /
    • 2002
  • Oship stream is located nearby south eastern coasts. This study was performed to find out waters quality modeling and then to predict water quality of Oship stream. Based on survey data, BOD, T-N, T-P calibration and verification result were in good agreement with measured value within mean coefficient variance(MSE) value, which were 13.9%, 9.0%, 26.5% and 19.5%, 12.0%, 16.5%, respectively. Sectional water quality predictions of the main stream of Oship stream are executed on the basis of the following cases 1) with sewage treatment of Dogye-eup 2) reduction of mine wastewater treatment of 80% in th basin. As a result, BOD, T-P improvement rates at down stream of Oship stream, case 1) were appeared 12.2%, 22.2%, case 2) maximum sulfate ion and conductivity reduction removal rate of Oship stream were 58%, 68%. The main pollution sources of Oship-stream were almost domestic wastewater and mine wastewater discharged from Dogye-eup which located in uppers stream. The large effects will appear after the construction of Dogye sewage water treatment plant which remove the organic matter and nutrients in these sewage water. The waste water from mine can not easily to treat for characteristics of effluence and economic problems. However, to achieve the goal of water quality in Oship-stream water system, treatments of those are necessary.

Variation Pattern of ${\delta}^{13}C_{DIC}$ of the Odaecheon Stream Water

  • Shin, Woo-Jin;Chung, Gong-Soo
    • 한국지구과학회:학술대회논문집
    • /
    • /
    • pp.115-125
    • /
    • 2005
  • Carbon isotopic composition of a stream (Odaecheon Stream) monitored over 7 months from July 2004 to January 2005 in Gangweon Province ranges from -9.24 to -4.69‰. Strong negative correlation between ${\delta}^{13}C_{DIC}$ and water temperature suggests that temperature is a dominant factor controlling ${\delta}^{13}C_{DIC}$ in the Odaecheon Stream. The variation pattern of ${\delta}^{13}C_{DIC}$ was thought to be caused by fractionation of C isotope between stream water and atmosphere and more fractionation at reduced temperature. More fractionation of C isotope between stream water and atmosphere at reduced temperature resulted in increase of ${\delta}^{13}C_{DIC}$ of stream water in winter compared to summer. Photosynthesis and respiration of aqueous biota seem to affect little in ${\delta}^{13}C_{DIC}$ as indicated by little variation of dissolved oxygen and reverse variation pattern of Eh in the stream and scarce aqueous biota in stream water. pH seems to be controlled by $CO_2{2}$ exchange between stream water and atmosphere. During summer more $CO_2{2}$ exchange between stream water and atmosphere resulted in decrease in pH value.

  • PDF

Analysis of Influences of the Solifluction Soil and Stream flow on the Stream Water Quality of Bukhansan National Park (북한산국립공원에서 동결융해침식토사 및 유량이 계류수질에 미치는 영향 분석)

  • Park, Jae Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.6 no.2
    • /
    • pp.11-20
    • /
    • 2003
  • This research was conducted to investigate the influences of the solifluction soil and amount of flow on the stream water quality of the Bukhansan National Park from March to october, 2002. The average pH of stream water was higher than that caused by solifluction soil. The average electrical conductivity of upstream water was about 2.1~2.8 times lower than that of downstream water. Linear regression analysis showed that pH and amount of anion($Cl^-$, ${NO_3}^-$, ${SO_4}^{2-}$) of stream water were very significantly correlated with those at the caused by solifluction soil. Structures for erosion control along both sides of stream channel should be designed in order not to influence upon solifluction soil and stream water quality.

Analysis of Drying Stream Characteristics in the Rural Area (농촌하천 건천화 특성조사 및 분석 -경기 진위천 중심-)

  • Park, Ki-Wook;Yoon, Yeo-Jung;Ju, Uk-Jong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • /
    • pp.68-73
    • /
    • 2005
  • The purpose of this study are to insure flow rate for rural stream in the rural area. The analysis of drying stream characteristics for two streams(Bong-mu, Wang-jang stream) from field survey data. Also, a study area has been determined, and criteria of estimation has been established : criteria such as, available hydrological data, the size of stream lengths and basin areas and regional characteristics. The spacial analysis is applied to stream slopes for upstream and downstream at weirs, stream networks and ground water pump stations, sinuosity of drying stream. As a result of drying streams survey analysis, drying stream characteristics are followed; levee types are earth and natural, cross sectional shapes are trapezoid, stream bed materials are gravels and sands, facilities in streams are weirs. The cause of the reduction analyzed by investigation of the current status of facilities for agricultural water use. Agricultural reservoirs block up the stream and water does not flow over the reservoirs except by storm. They also discharge water through diversion channels and the water diverted does not flow through the natural stream. Farmers directly take water from the stream by weirs.

  • PDF

The Phytoplankton community of Namdae-stream, Yeongok-stream and of Sacheon-stream in Gangwon-do (강원도 남대천, 연곡천과 사천천의 식물플랑크톤 군집)

  • Kim, Yong-Jin;Lee, Ok-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.281-297
    • /
    • 2011
  • The specie composition, stranding crops and the dominant species of phytoplankton were studied in three streams, Namdae-stream, Yeongok-stream and Sacheon-stream from May 2008 to February 2009. The water qualities of the three streams which run into estuary were also examined using phytoplankton indicators. As the result, the phytoplankton appeared 94 taxa in Namdae-stream, 79 taxa in Yeongok-stream and 73 taxa in Sacheon-stream, diatoms appeared the most in phytoplankton. Genus Navicula and Cymbella in diatoms appeared to be over 10 taxa in each stream, N. cryptocephala, N. cryptotenella and N. gregaria, the pollution tolerance taxa, appeared more frequent in the downstream. Due to the separation of each substrate by the rapid water velocity in the upstream, Achnanthes minutissima, a known periphyton, was dominant in upstream site at Namdae and Yeongok-stream. Some construction areas and sites of downstream of Namdae-stream, Yeongok-stream and Sacheon-stream were shown to be polluted because pollution tolerance taxa, such as Cyclotella meneghiniana, Nitzschia palea and Oscillatoria limnetica, were dominant. The total of 20 taxa phytoplankton indicators were found, composed of 16 taxa of Water pollution algae including Oscillatoria limosa, 2 taxa of Clean water algae Meridion circulare and Staurastrum puntulatum, 1 taxa of Toxic algae Microcystis aeruginosa and 1 taxa of Taste and odor algae Fragilaria construens. Water pollution indicators were appeared frequently in polluted sites of biological water quality(DAIpo, TDI) and of sites containing high trophic state index(TSI). Therefore, using the phytoplankton indicators can assess water quality through relation of biological water quality and trophic state index.

A Study on the Planning Elements for Ecological Restoration of Urban Stream through Present Condition Analysis - focused on the Yeocheon and the Mugeo stream - (현황분석을 통한 도시 소하천의 생태하천 계획요소에 관한 연구 -울산광역시 무거.여천천을 중심으로-)

  • Kim, Seong Cheol;Lee, Cheol Yeong
    • Journal of Environmental Science International
    • /
    • v.13 no.9
    • /
    • pp.747-757
    • /
    • 2004
  • The objectives of this study were to investigate the physical, chemical, and structural characteristics of the stream, especially Mugeo and Yeochon which are being changed to ecological stream by Ulsan city, and to acquire the considerations such as the planning element and plan criteria of the streams for making ecological stream system. Water quality, water quantity, vegetation, in stream structures and facilities, and land usage of the streams were investigated and the build up capabilities of ecological stream for the two streams were also analyzed. Planning elements for restoration to ecological stream included physical and biological purification methods in water quality, short term water acquire alternatives in water quantity, and vegetation recovery plan and improvement of habitation environment in ecological system, respectively. Planing elements in physical structures and facilities also included recovery of concrete levee and removal and recovery of covered channel.

Water Quality Management Plan through Mass Balance at Small Urban Stream (중.소 도시하천의 물질수지를 통한 수질관리 방안 도출)

  • Oh, Jong-Min;Shin, Dong-Hwan;Choi, I-Song
    • Journal of Korean Society of Hazard Mitigation
    • /
    • v.4 no.1
    • /
    • pp.51-56
    • /
    • 2004
  • In this study, the variation of water quality in Osan stream was investigated through continuous monitoring, and mass balance and metabolism occurred into water body were estimated to set up effective management plan for water quality of small urban stream. From the results of continuos investigation of water quality in Osan stream, the things written as follows must be previously done to improve water quality of main stream. Firstly, it need that effective management plan for tributaries must be set up to improve the water quality in main stream. Secondly, the counter plan for re-eruption of pollutants from sediment in main-stream is required to prevent inner pollution. In this study, we showed that small urban stream can be managed effectively by simple investigation to prevent deterioration of water quality. Therefore continuous monitoring for water quality in stream is important to improve water quality, furthermore matter cycle and mass balance happening in the stream environment must be correctly estimated to make up healthy stream environment.