• Title, Summary, Keyword: Subanesthetic dose

Search Result 2, Processing Time 0.023 seconds

Effect of Sedative Dose of Propofol on Neuronal Damage after Transient Forebrain Ischemia in Mongolian Gerbils

  • Lee, Seong-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.73-79
    • /
    • 2000
  • This study investigated whether propofol, an intravenous, non-barbiturate anesthetic, could reduce brain damage following global forebrain ischemia. Transient global ischemia was induced in gerbils by occlusion of bilateral carotid arteries for 3 min. Propofol (50 mg/kg) was administered intraperitoneally 30 min before, immediately after, and at 1 h, 2 h, 6 h after occlusion. Thereafter, propofol was administered twice daily for three days. Treated animals were processed in parallel with ischemic animals receiving 10% intralipid as a vehicle or with sham-operated controls. In histologic findings, counts of viable neurons were made in the pyramidal cell layer of the hippocampal CA1 area 4 days after ischemia. The number of viable neurons in the pyramidal cell layer of CA1 area was similar in animals treated with a vehicle or a subanesthetic dose of propofol. In terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end-labeling (TUNEL) assay, semiquantitative analysis of dark-brown neuronal cells was made in the hippocampal CA1 area. There was no significant difference in the degree of TUNEL staining in the hippocampal CA1 area between vehicle-treated and propofol-treated animals. These results show that subanesthetic dose of propofol does not reduce delayed neuronal cell death following transient global ischemia in Mongolian gerbils.

  • PDF

Influence of Intracerebroventricular Thiopental Sodium on the Renal Function in Conscious Rabbit (측뇌실내로 투여한 Thiopental Sodium의 가토 신장기능에 미치는 영향)

  • Hong, Ki B.;Cho, Kyung W.
    • The Korean journal of physiology & pharmacology
    • /
    • v.19 no.1
    • /
    • pp.35-48
    • /
    • 1985
  • One of most frequently used anesthetic agents is barbiturate derivatives. Pentobarbital or thiopental sodium have been used most frequently in the laboratory or clinical practice. There have been reports on the renal effects of barbiturate anesthesia in human and laboartory animals. Renal effects of thiopental sodium anesthesia, however, are still controversial. One of the discrepancies may be derived from the doses used. It has been reported that subanesthetic small dose of thiopental sodium influences the renal function directly. To clarify possible central effects of very small amounts of thiopental sodium on the renal function, experiments have been done in conscious rabbits. Thiopental sodium was infused into the lateral cerebroventricle for 10 minutes. Intracerebroventricular thiopental sodium induced increased urinary volume, glomerular filtration rate and renal plasma flow by doses of $0.1{\sim}1.0\;mg/10 min/rabbit$. Filtration fractions were not changed. Sodium, chloride and potassium excretions were increased by 0.065 mg/10 min/rabbit of thiopental sodium without significant changes of renal hemodynamics. Higher doses of thiopental sodium $(0.1{\sim}1.0\;mg/10 min/rabbit)$ induced greater increases of electrolytes excretion and renal hemodynamics. Free water clearance was not changed by thiopental sodium, but the fractional excretion of free water showed a tendency of decrease. Fractional excretion of sodium was increased by doses of 0.065 to 1.0 mg of thiopental sodium . Highly significant correlation between the changes of glomerular filtration rate and the changes of sodium excretion were found in the higher doses. Plasma renin concentration (activity) was not changed by the centrally administered thiopental sodium. Intravenous thiopental sodium, 1.0 mg/rabbit, induced no changes of renal function in conscious rabbit. These data suggest that intracerebroyentricular thiopental sodium can increase urinary sodium excretion directly by inhibition of sodium reabsorption in the renal tubules and/or indirectly by increasing the renal hemodynamics.

  • PDF