• Title, Summary, Keyword: Subdomain method

Search Result 43, Processing Time 0.051 seconds

Subdomain-Based Finite Element Method for Thermomechanical Analysis with Thermal Radiation (열복사를 고려한 열기계학적 해석을 위한 유한요소 부영역 결합법의 적용)

  • Shin Eui-Sup;Jin Ji-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.6
    • /
    • pp.705-712
    • /
    • 2006
  • A finite element method based on the penalized subdomain-interface framework is proposed for fully-coupled, nonlinear thermomechanical analyses with thermal contact anuor radiation boundaries. In the variational formulation, a well-known penalty functional scheme is adopted for connecting subdomains and interfaces that satisfy various continuity requirements. As a logical consequence, the whole domain can be arbitrarily divided into independently-modeled subdomains without considering the conformity of meshes along their interfaces. Since the nonlinearities due to the contact and radiation boundaries can be localized within a few subdomains, the computational efficiency of the present method is greatly increased with appropriate solution algorithms. By solving some numerical problems, these advantageous features are confirmed carefully.

On The Parallel Inplementation of a Static/Explicit FEM Program for Sheet Metal Forming (판금형 해석을 위한 정적/외연적 유한요소 프로그램의 병령화에 관한 연구)

  • ;;G.P.Nikishikov
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • /
    • pp.625-628
    • /
    • 1995
  • A static/implicit finite element code for sheet forming (ITAS3D) is parallelized on IBM SP 6000 multi-processor computer. Computing-load-balanced domain decomposition method and the direct solution method at each subdomain (and interface) equation are developed. The system of equations for each subdomain are constructed by condensation and calculated on each processor. Approximated operation counts are calculated to set up the nonlinear equation system for balancing the compute load on each subdomain. Th esquare cup tests with several numbers of elements are used in demonstrating the performance of this parallel implementation. This procedure are proved to be efficient for moderate number of processors, especially for large number of elements.

  • PDF

Analytical Performance Modelling of Slotted Surface-Mounted Permanent Magnet Machines with Rotor Eccentricity

  • Yan, Bo;Wang, Xiuhe;Yang, Yubo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.778-789
    • /
    • 2017
  • This paper presents an improved subdomain method to predict the magnet field distributions and electromagnetic performance of the surface-mounted permanent magnet (SPM) machines with static or dynamic eccentricity. Conventional subdomain models are either based on the scalar magnet potential to predict the rotor eccentricity effect or dependent on the magnetic vector potential without considering the eccentric rotor. In this paper, both the magnetic vector potential and the perturbation theory are introduced in order to accurately calculate the effect of rotor eccentricity on the open-circuit and armature reaction performance. The calculation results are presented and validated by the corresponding finite-element method (FEM) results.

An Incompressible Flow Computation using a Multi-level Substructuring Method (다단계 부분 구조법에 의한 비 압축성 유동 계산)

  • Kim J. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • /
    • pp.83-90
    • /
    • 2004
  • Substructuring methods are usually used in finite element structural analyses. In this study a multi-level substructuring algorithm is developed and proposed as a possible candidate for incompressible fluid solves. Finite element formulation for incompressible flow has been stabilized by a modified residual procedure proposed by Ilinca et.al.[5]. The present algorithm consists of four stages such as a gathering stage, a condensing stage, a solving stage and a scattering stage. At each level, a predetermined number of elements are gathered and condensed to form an element of higher level. At highest level, each subdomain consists of only one super-element. Thus, the inversion process of a stiffness matrix associated with internal degrees of freedom of each subdomain has been replaced by a sequential static condensation. The global algebraic system arising feom the assembly of each subdomains is solved using Conjugate Gradient Squared(CGS) method. In this case, pre-conditioning techniques usually accompanied by iterative solvers are not needed.

  • PDF

Thermomechanical Contact Analysis by Subdomain/Interface Finite Element Method (유한요소 부영역 결합법을 이용한 열기계학적 접촉 해석)

  • Shin, Eui-Sup;Jin, Ji-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.7-14
    • /
    • 2005
  • A subdomain-interface finite element method is suggested to solve a class of fully- coupled thermomechanical problems with contact boundaries. The penalty method is used for connecting subdomains that satisfy interface compatibility conditions. As a result, effective stiffness matrices are always positive definite, and computational efficiency can be improved to a considerable degree. Moreover, any complex-shaped domain can be divided into independently modeled subdomains without considering the conformity of meshes on interfaces. Using a computer code based on the present method, these advantageous features are shown through a set of numerical studies.

Substructure/fluid subdomain coupling method for large vibroacoustic problems

  • El Maani, Rabii;El Hami, Abdelkhalak;Radi, Bouchaib
    • Structural Engineering and Mechanics
    • /
    • v.65 no.4
    • /
    • pp.359-368
    • /
    • 2018
  • Dynamic analysis of complex and large structures may be costly from a numerical point of view. For coupled vibroacoustic finite element models, the importance of reducing the size becomes obvious because the fluid degrees of freedom must be added to the structural ones. In this paper, a component mode synthesis method is proposed for large vibroacoustic interaction problems. This method couples fluid subdomains and dynamical substructuring of Craig and Bampton type. The acoustic formulation is written in terms of the velocity potential, which implies several advantages: coupled algebraic systems remain symmetric, and a potential formulation allows a direct extension of Craig and Bampton's method to acoustics. Those properties make the proposed method easy to implement in an existing finite element code because the local numerical treatment of substructures and fluid subdomains is undifferentiated. Test cases are then presented for axisymmetric geometries. Numerical results tend to prove the validity and the efficiency of the proposed method.

An Application of the Localized Finite Element Method to 3-dimensional Free Surface Wave Problems (3차원 자유표면파 문제에서의 국소유한요소법의 응용)

  • K.J.,Bai;Se-Eun,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.1-8
    • /
    • 1987
  • In this paper, the localized finite element method(LFEM) is applied to 3-dimensional ship motion problems in water of infinite depth. The LFEM used here is based on the functional constructed by Bai & Yeung(1974). To test the present numerical scheme, a few vertical axisymmetric bodies are treated by general 3-dimensional formulation. The computed results of hydrodynamic coefficients for a few vertical spheroids and vertical circular cylinders show good agreement with results obtained by others. The advantages of the present numerical method compared with the method of integral equation are as follows; (i) The cumbersome existence of irregular frequencies in the method of conventional integral equation is removed. (ii) The final matrix is banded and symmetric and the computation of the matrix elements is comparatively easier, whereas the size of the matrix in the present scheme is much larger. (iii) In the future research, it is possible to accommodate with the nonlinear exact free surface boundary condition in the localized finite element subdomain, whereas the linear solution is assumed in the truncated(far field) subdomain.

  • PDF

Numerical Models for Atmospheric Diffusion Phenomena by Pseudospectral Method(2) : Spectral Model for a Hilly Terrain of Real Scale (의사스펙트로법에 의한 대기확산현상의 수치모델(2): 실규모의 복잡지형에서의 스펙트로모델)

  • 김선태
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.242-246
    • /
    • 1993
  • Theoretically, spectral method has the highest accuracy among present numerical methods, but it is generally difficult to apply to complex terrains because of complex boundary conditions. Recently, spectral-element method, basically divide the domain into a set of rectangular subdomain and solve the equation at each subdomain, has been introduced. However, boundary conditions become more complex and requires more computing time, thus spectral-element method is not powerful for all complex terrain problems. In this paper, potential flow theory was intorduced to solve the air flows and diffusion phenomenon in the presence of terrain obstacles. Using the velocity potential-stream line orthogonal coordinate space, the diffusion problems of hilly terrain by pseudospectral method were solved and compared those with no terrain real scale solutions.

  • PDF

Implementation Strategy for the Numerical Efficiency Improvement of the Multiscale Interpolation Wavelet-Galerkin Method

  • Seo Jeong Hun;Earmme Taemin;Jang Gang-Won;Kim Yoon Young
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.110-124
    • /
    • 2006
  • The multi scale wavelet-Galerkin method implemented in an adaptive manner has an advantage of obtaining accurate solutions with a substantially reduced number of interpolation points. The method is becoming popular, but its numerical efficiency still needs improvement. The objectives of this investigation are to present a new numerical scheme to improve the performance of the multi scale adaptive wavelet-Galerkin method and to give detailed implementation procedure. Specifically, the subdomain technique suitable for multiscale methods is developed and implemented. When the standard wavelet-Galerkin method is implemented without domain subdivision, the interaction between very long scale wavelets and very short scale wavelets leads to a poorly-sparse system matrix, which considerably worsens numerical efficiency for large-sized problems. The performance of the developed strategy is checked in terms of numerical costs such as the CPU time and memory size. Since the detailed implementation procedure including preprocessing and stiffness matrix construction is given, researchers having experiences in standard finite element implementation may be able to extend the multi scale method further or utilize some features of the multiscale method in their own applications.