• 제목/요약/키워드: Subspace

검색결과 718건 처리시간 0.076초

다채널 위너 필터의 주성분 부공간 벡터 보정을 통한 잡음 제거 성능 개선 (Improved speech enhancement of multi-channel Wiener filter using adjustment of principal subspace vector)

  • 김기백
    • 한국음향학회지
    • /
    • 제39권5호
    • /
    • pp.490-496
    • /
    • 2020
  • 본 논문에서는 잡음 환경에서 다채널 위너 필터의 성능을 향상시키기 위한 방법을 제안한다. 부공간(subspace) 기반의 다채널 위너 필터를 설계하는 경우, 목적 신호가 단일 음원인 경우는 음성 상관 행렬의 주성분 부공간에서 음성 성분을 추정할 수 있다. 이 때, 음성 상관 행렬은 음성과 간섭 잡음의 교차 상관도가 음성 상관 행렬에 비해 무시할만한 수준이라는 가정하에 신호 상관 행렬에서 간섭 잡음의 상관 행렬을 차감하여 추정하게 된다. 그러나 간섭 잡음 수준이 높아지게 되면 이러한 가정이 더 이상 유효하지 않게 되며 이에 따라 주성분 부공간 추정 오차도 증가하게 된다. 본 연구에서는 음성 존재 확률과 목적 신호의 방향 벡터를 이용하여 주성분 부공간을 보정하는 방법을 제안한다. 주성분 부공간에서 다채널 음성 존재 확률을 유도하고 주성분 부공간 벡터를 보정하는데 적용하였다. 실험을 통해 제안하는 방법이 잡음 환경에서 다채널 위너 필터의 성능을 향상시키는 것을 확인할 수 있다.

일반화된 가우시안 분포를 이용한 신호 준공간 기반의 음성검출기법 (Signal Subspace-based Voice Activity Detection Using Generalized Gaussian Distribution)

  • 엄용섭;장준혁;김동국
    • 한국음향학회지
    • /
    • 제32권2호
    • /
    • pp.131-137
    • /
    • 2013
  • 본 논문에서는 신호준공간(signal subspace) 영역에서 통계적 모델을 이용한 향상된 음성검출기법을 제안한다. 이를 위해 EP(Embedded Prewhitening) 기법에 의해 비상관적인 (uncorrelated) 신호준공간을 생성하고, 이 영역에서 잡음음성과 잡음에 대한 통계적 특성을 파악하였다. 이러한 통계적 특성에 근거하여 GGD (Generalized Gaussian Distribution)을 사용하여 보다 효율적인 음성검출 알고리즘을 제안한다. 실험을 통해 제안된 기법이 0-15dB SNR의 시뮬레이션 환경에서 기존 Gaussian을 사용한 신호준공간 기법보다 향상된 음성검출 결과를 보여준다.

신호부공간 추정 성능 향상을 위한 전후방 상관과 제곱근행렬 갱신을 이용한 COPAST(correlation-based projection approximation for subspace-tracking) 알고리즘 연구 (A Square-Root Forward Backward Correlation-based Projection Approximation for Subspace Tracking)

  • 임준석;편용국
    • 전자공학회논문지 IE
    • /
    • 제48권1호
    • /
    • pp.7-15
    • /
    • 2011
  • 본 논문에서는 상관계수를 바탕으로 신호부공간을 추정하는 COPAST(correlation-based projection approximation subspace tracking)의 성능을 향상시키기 위하여 상관계수를 구하는 부분을 순방향 신호 벡터로부터 상관계수를 구하고 동시에 역방향 신호 벡터에서도 상관계수를 구하여 신호 부공간을 추정하는 방법을 제안한다. 또 매번 갱신되는 상관행렬의 안정성을 도모하고자 제곱근 행렬 갱신을 하도록 하였다. 컴퓨터 모의 실험을 통해서 제안된 방법이 기존의 COPAST에 비해서 약 5dB의 신호 부공간 추정 정확도에 향상이 있었음을 확인하였다.

SEQUENTIAL EM LEARNING FOR SUBSPACE ANALYSIS

  • Park, Seungjin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.698-701
    • /
    • 2002
  • Subspace analysis (which includes PCA) seeks for feature subspace (which corresponds to the eigenspace), given multivariate input data and has been widely used in computer vision and pattern recognition. Typically data space belongs to very high dimension, but only a few principal components need to be extracted. In this paper I present a fast sequential algorithm for subspace analysis or tracking. Useful behavior of the algorithm is confirmed by numerical experiments.

  • PDF

THE HYPERINVARIANT SUBSPACE PROBLEM FOR QUASI-n-HYPONORMAL OPERATORS

  • Kim, An-Hyun;Kwon, Eun-Young
    • 대한수학회논문집
    • /
    • 제22권3호
    • /
    • pp.383-389
    • /
    • 2007
  • In this paper we examine the hyperinvariant subspace problem for quasi-n-hyponormal operators. The main result on this problem is as follows. If T = N + K is such that N is a quasi-n-hyponormal operator whose spectrum contains an exposed arc and K belongs to the Schatten p-ideal then T has a non-trivial hyperinvariant subspace.

신호 부공간에 기초한 간단한 적응 어레이 및 성능분석 (Signal-Subspace-Based Simple Adaptive Array and Performance Analysis)

  • 최양호
    • 대한전자공학회논문지SP
    • /
    • 제47권6호
    • /
    • pp.162-170
    • /
    • 2010
  • 원하는 신호의 도래방향에 관한 정보를 이용하여 적응 어레이는 이 방향으로 빔 이득을 유지하면서 간섭신호를 제거한다. 신호 부공간에서 가중벡터를 조정하면 전체 공간에서 조정하는 방식에 비해 빠른 수렴속도를 가지며, 도래각 정보에서의 에러에 강인한 특성을 가진다. 그러나 공분산 행렬의 고유분해가 필요하고 이에 따른 계산이 복잡하다. 본 논문에서는 PASTd(projection approximation subspace tracking with deflation) 방식에 기초하여 계산이 간단한 신호 부공간에 기초한 적응어레이를 제시한다. 제시된 방식은 고유벡터가 직교하도록 원래의 PASTd를 변형해서 사용하고 있고, 직접 고유분해하는 방식과 동일한 성능을 가지면서 계산량을 크게 감소시킬 수 있다. 또한 신호 부공간 어레이의 SINR(signal-to-interference plus noise ratio)성능을 이론적으로 분석하여, 이의 동작특성을 고찰하였다.

뇌파/뇌자도 전류원 국지화의 공간분해능 향상을 위한 독립성분분석 기반의 부분공간 탐색 알고리즘 (An ICA-Based Subspace Scanning Algorithm to Enhance Spatial Resolution of EEG/MEG Source Localization)

  • 정영진;권기운;임창환
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권6호
    • /
    • pp.456-463
    • /
    • 2010
  • In the present study, we proposed a new subspace scanning algorithm to enhance the spatial resolution of electroencephalography (EEG) and magnetoencephalography(MEG) source localization. Subspace scanning algorithms, represented by the multiple signal classification (MUSIC) algorithm and the first principal vector (FINE) algorithm, have been widely used to localize asynchronous multiple dipolar sources in human cerebral cortex. The conventional MUSIC algorithm used principal component analysis (PCA) to extract the noise vector subspace, thereby having difficulty in discriminating two or more closely-spaced cortical sources. The FINE algorithm addressed the problem by using only a part of the noise vector subspace, but there was no golden rule to determine the number of noise vectors. In the present work, we estimated a non-orthogonal signal vector set using independent component analysis (ICA) instead of using PCA and performed the source scanning process in the signal vector subspace, not in the noise vector subspace. Realistic 2D and 3D computer simulations, which compared the spatial resolutions of various algorithms under different noise levels, showed that the proposed ICA-MUSIC algorithm has the highest spatial resolution, suggesting that it can be a useful tool for practical EEG/MEG source localization.

부도 예측을 위한 앙상블 분류기 개발 (Developing an Ensemble Classifier for Bankruptcy Prediction)

  • 민성환
    • 한국산업정보학회논문지
    • /
    • 제17권7호
    • /
    • pp.139-148
    • /
    • 2012
  • 분류기의 앙상블 학습은 여러 개의 서로 다른 분류기들의 조합을 통해 만들어진다. 앙상블 학습은 기계학습 분야에서 많은 관심을 끌고 있는 중요한 연구주제이며 대부분의 경우에 있어서 앙상블 모형은 개별 기저 분류기보다 더 좋은 성과를 내는 것으로 알려져 있다. 본 연구는 부도 예측 모형의 성능개선에 관한 연구이다. 이를 위해 본 연구에서는 단일 모형으로 그 우수성을 인정받고 있는 SVM을 기저 분류기로 사용하는 앙상블 모형에 대해 고찰하였다. SVM 모형의 성능 개선을 위해 bagging과 random subspace 모형을 부도 예측 문제에 적용해 보았으며 bagging 모형과 random subspace 모형의 성과 개선을 위해 bagging과 random subspace의 통합 모형을 제안하였다. 제안한 모형의 성과를 검증하기 위해 실제 기업의 부도 예측 데이터를 사용하여 실험하였고, 실험 결과 본 연구에서 제안한 새로운 형태의 통합 모형이 가장 좋은 성과를 보임을 알 수 있었다.

SMOOTH FUZZY CLOSURE AND TOPOLOGICAL SPACES

  • Kim, Yong Chan
    • Korean Journal of Mathematics
    • /
    • 제7권1호
    • /
    • pp.11-25
    • /
    • 1999
  • We will define a smooth fuzzy closure space and a subspace of it. We will investigate relationships between smooth fuzzy closure spaces and smooth fuzzy topological spaces. In particular, we will show that a subspace of a smooth fuzzy topological space can be obtained by the subspace of the smooth fuzzy closure space induced by it.

  • PDF

Time-Varying Subspace Tracking Algorithm for Nonstationary DOA Estimation in Passive Sensor Array

  • Lim, Junseok;Song, Joonil;Pyeon, Yongkug;Sung, Koengmo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권1E호
    • /
    • pp.7-13
    • /
    • 2001
  • In this paper we propose a new subspace tracking algorithm based on the PASTd (Projection Approximation Subspace Tracking with deflation). The algorithm is obtained via introducing the variable forgetting factor which adapts itself to the time-varying subspace environments. The tracking capability of the proposed algorithm is demonstrated by computer simulations in an abruptly changing DOA scenario. The estimation results of the variable forgetting factor PASTd(VFF-PASTd) outperform those of the PASTd in the nonstationary case as well as in the stationary case.

  • PDF