• 제목/요약/키워드: Subspace

검색결과 724건 처리시간 0.07초

범주형 속성 기반 군집화를 위한 새로운 유사 측도 (A New Similarity Measure for Categorical Attribute-Based Clustering)

  • 김민;전주혁;우경구;김명호
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제37권2호
    • /
    • pp.71-81
    • /
    • 2010
  • 데이터의 군집을 찾아내는 문제는 패턴 인식, 이미지 처리, 시장 조사 등 많은 응용 분야에서 널리 사용되고 있다. 군집의 질을 결정하는 핵심 요소로는 유사 측도, 차원의 개수 등이 있다. 유사 측도는 데이터의 특성을 반영하여 다르게 정의되어야 하는데, 대부분 기존의 연구들은 데이터를 특징 지어주는 속성이 수치형으로 주어진 경우에 국한되어 있었다. 속성이 범주형으로 주어진 경우도 실생활에 많이 존재하지만, 범주형 변수에 대한 속성값의 유사성은 값의 순서가 고유하게 정해지지 않아서 정의하기 어렵다. 이에 더하여, 고차원 데이터에 대해서는 데이터 점들이 희박하게 위치하여 가까운 점과 먼 점간의 차이가 거의 없고, 군집화 결과가 좋지 않을 수 있다. 이 문제를 해결하기 위해 부분 차원 군집화 방법이 제안되어 왔다. 부분 차원 군집화 방법은 각 군집을 발견하기에 적합한 부분 차원을 선택하면서 군집화를 수행하는 방법이다. 본 논문에서는 범주형 속성으로 특징지어진 고차원 데이터를 부분 차원 군집화하기 위한 새로운 유사 측도를 제안한다. 유사 측도는 각 군집은 다른 군집과 구별되는 특정 정보를 잘 표현할 수 있어야 한다는 기본적인 가정 하에 속성들 사이의 상관성을 반영하여 정의되었다. 이들 모두를 반영한 유사측도는 기존에 존재하지 않았다는 점에서 본 연구는 의미가 있다. 실제 데이터 집합을 군집화하는 실험을 통해 제안하는 방법이 다른 군집화 방법보다 저차원 데이터와 고차원 데이터 모두에 대해 좀 더 정확한 군집 결과를 얻을 수 있음을 보였다.

화자식별을 위한 강인한 주성분 분석 가우시안 혼합 모델 (RPCA-GMM for Speaker Identification)

  • 이윤정;서창우;강상기;이기용
    • 한국음향학회지
    • /
    • 제22권7호
    • /
    • pp.519-527
    • /
    • 2003
  • 음성신호는 주변 잡음과 화자의 발성 패턴 변화, 음성 검출 오류에서 생기는 이상치(outlier)에 많은 영향을 받고 있다. 이러한 음성 신호를 이용하여 화자인식에 이용할 경우 인식률이 저하된다. 본 논문에서는 화자식별 (speaker identification)에서 학습 특징 벡터의 이상치와 고차원 문제를 해결하기 위하여 M-추정을 이용한 강인한 주성분 분석 가우시안 혼합모델 (Robust Principal Component Analysis-Gaussian Mixture Model)방법을 제안하였다. 제안된 방법은 먼저, 특징 벡터에 이상치가 존재할 경우 M-추정에 의하여 강인한 공분산 행렬을 재추정하여 얻어진 고유벡터로부터 변환 행렬을 구하여 감소된 차원을 갖는 새로운 특징벡터를 구한다. 여기에서 얻은 선형변환된 특징벡터로부터 화자의 가우시안 혼합 모델을 구한다. 제안된 방법의 성능을 검증하기 위하여 화자식별 실험을 하였다. 실험은 전형적인 가우시안 혼합 모델 방법과 주성분 분석법, 제안된 방법을 비교 분석하였다. 이상치가 2%씩 증가할 때마다 가우시안 혼합모델 방법과 주성분 분석법은 각각 0.65%, 0.55%씩 화자식별 성능이 저하되었지만, 제안된 방법은 0.03%정도 감소하였으므로 이상치에 더욱 강인함을 알 수 있다.

강인 음성 인식을 위한 가중화된 음원 분산 및 잡음 의존성을 활용한 보조함수 독립 벡터 분석 기반 음성 추출 (Speech extraction based on AuxIVA with weighted source variance and noise dependence for robust speech recognition)

  • 신의협;박형민
    • 한국음향학회지
    • /
    • 제41권3호
    • /
    • pp.326-334
    • /
    • 2022
  • 이 논문에서는 배경 잡음이 포함되는 환경에서 강인한 음성 인식을 하기 위한 전처리 단계로서 쓰이는 목표 음성 향상 방법을 제안한다. 보조 함수 기반의 독립 벡터 분석(Auxiliary-function-based Independent Vector Analysis, AuxIVA) 기법을 기반으로 가중 공분산 행렬에서 시간에 따라 변하는 분산에 의해서 가중치가 결정된다. 목표 음성에 대한 시간-주파수별 기여도를 나타내는 마스크를 통해 분산의 크기를 조절한다. 이러한 마스크는 음성 향상을 위해서 학습된 신경망 혹은 목표 화자로부터의 직선 성분의 기여도를 찾기 위한 확산성으로부터 추정할 수 있다. 이에 더하여 둘러싼 잡음에 대한 출력들은 서로 다차원 독립 성분 분석을 도입하여 의존성을 주어 안정적으로 노이즈 성분을 추출할 수 있다. 이 AuxIVA 기반의 목표 음성 추출 알고리즘은 또한 노이즈에 대해서 비음수 행렬 분해(Non-negative Matrix Factorization, NMF)를 비음수 텐서 분해(Non-negative Tensor Factorization, NTF)로 확장하여 독립 단순 행렬 분석(Independent Low-Rank Matrix Analysis, ILRMA)의 틀에서도 수행될 수 있다. 이러한 확장을 통해서 여전히 잡음 출력 채널에서의 채널간 의존성을 유지할 수 있다. CHiME-4데이터셋에 대한 실험 결과는 소개된 알고리즘에 대한 효과를 보여준다.

선형 판별분석과 공통벡터 추출방법을 이용한 음성인식 (Speech Recognition Using Linear Discriminant Analysis and Common Vector Extraction)

  • 남명우;노승용
    • 한국음향학회지
    • /
    • 제20권4호
    • /
    • pp.35-41
    • /
    • 2001
  • 본 논문에서는 선형 판별분석 (LDA: Linear Discriminant Analysis)과 공통벡터 추출방법을 이용한 음성인식방법을 제안하였다. 음성신호는 화자의 성별, 나이, 출생지, 주위 잡음, 정신적 상태, 발성기관의 구조 등과 같은 다양한 정보를 포함하고 있다. 이로 인해 같은 음성신호라 할지라도 서로 다른 화자가 발성하게 되면 서로 다른 특성을 보이게 된다. 음성신호의 이러한 성질은 같은 음성군 (class)에 포함된 공통된 특성벡터를 추출하는 일을 상당히 어렵게 한다. 음성신호에서 공통된 특징 벡터를 추출하는 방법은 KLT (Karhunen-Loeve Transformation)와 같이 선형 대수적인 접근방법이 많이 사용되어지고 있으나, 본 논문에서는 M. Bilginer et al.이 제안한 공통벡터 추출 방법을 사용하였다. M. Bilginer et al.이 제안한 방법은 주어진 훈련 음성신호들에 대하여 최적의 공통 벡터를 추출하여 주면서 공통벡터 추출에 사용된 훈련 데이터에 대해서는 100%의 인식결과를 보여준다. 그러나 공통벡터 추출을 위한 훈련 음성신호의 수를 무한히 늘릴 수 없다는 점과 공통벡터들간의 구별정보 (discriminant information)가 정의되지 않았다는 단점이 있다. 본 논문에서는 단어그룹간 (class) 구별정보를 추출된 공통벡터와 결합해 단어간의 오인식률 (error rate)을 감소시킬 수 있는 방법과 공통벡터 추출방법에 적합한 파라미터 가공 방법을 제안하였다. 공통벡터 추출방법은 음성신호의 시간 축 정규화 방법과 벡터의 차원 크기에 따라 인식시간과 인식률에 영향을 받는다. 따라서 부적절한 시간 축 정렬과 너무 큰 벡터의 차원 수는 인식률 저하 등과 같이 알고리즘의 효율성을 떨어뜨린다. 본 논문에서 제안한 방법을 사용하여 실험한 결과 알고리즘의 효율성이 증가되었으며, 기존방법보다 약 2%정도의 향상된 인식률을 얻을 수 있었다.낮추는 효과를 나타내었다.다. 이상의 결과를 통하여 추출 온도와 용매 농도에 따른 수율의 차이가 있었으며 free radical 소거 활성에서는 종자 에탄을 추출물이 과피 에탄올 추출물 보다 145배 이상의 현저히 높은 활성을 나타내었다.을 나타내었다.'Lian(연)' : repeatability, continuance, plenty and intercommunicate, 2. 'Lian(연)'-'Lian(염)': integrity, 3. 'He (하)'-'He(화)' : peace, harmony and combination, 4. 'He(하)'-'He(하)' : clear river, 5.'He(하)'-'He(하)' ; all work goes well. When the Chinese use lotus patterns in lucky omen patterns, same pronunciation and pitch of Chinese language more prominent than natural properties or the image of Buddhism. I guess that it cause praying individual's peace and happiness more serious than philosophical meaning or symbol that base in Buddhism for ordinary people.ML., -9.00~12.49 and -19.81~19.81%, respectively). Therefore, it is concluded that the two formulations are bioequivalent for both the extent and the rate of absorption after single dose administration.ation.ion.ion.ation.ion.n. fibrosis, collagen bundle) was

  • PDF