• Title, Summary, Keyword: Super stability

Search Result 131, Processing Time 0.036 seconds

MICROLEAKAGE AND WATER STABILITY OF RESIN CEMENTS

  • Choi Sun-Young;Lee Sun-Hyung;Yang Jae-Ho;Han Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.3
    • /
    • pp.369-378
    • /
    • 2003
  • Statement of Problem: Recently, resin cements have become more widely used and have been accepted as prominent luting cements. Current resin cements exhibit less microleakage than conventional luting cements. However, the constant contact with water and exposure to occlusal forces increase microleakage even in resin cements inevitably. Most bonding resins have been modified to contain a hydrophilic resin such as 2-hydroxyethylmethacrylate (HEMA) to overcome some of the problems associated with the hydrophobic nature of bonding resins. By virtue of these modifications, bonding resins absorb a significant amount of water, and there may also be significant stresses at bonding interfaces, which may adversely affect the longevity of restorations. Therefore the reinforcement of water stability of resin cement is indispensable in future study. Purpose: This study was conducted to examine the influence of water retention on microleakage of two resin cements over the period of 6 months. Materials and Methods: 32 extracted human teeth were used to test the microleakage of a single full veneer crown. Two resin cements with different components and adhesive properties - Panavia F (Kuraray Co., Osaka, Japan) and Super-Bond C&B (Sun Medical Co., Kyoto, Japan)- were investigated. The storage medium was the physiological saline solution changed every week for 1 month, 3 months, and 6 months. One group was tested after storage for 1 day. At the end of the each storage period, all specimens were exposed to thermocycling from $5^{\circ}C$ to $55^{\circ}C$ of 500 cycles and chewing simulation of 50,000 cycles, and then stained with 50% silver nitrate solution. The linear penetration of microleakage was measured using a stereoscopic microscope at ${\times}40$ magnification and a digital traveling micrometer with an accuracy of ${\pm}3{\mu}m$. Values were analyzed using two-way ANOVA test, Duncan's multiple range tests (DMRT). Results : Statistically significant difference of microleakage was shown in the 3-month group compared with the1-day or 1-month group in both systems (p<0.05) and there were statistically significant differences in microleakage between the 3-month group and the 6-month group in both systems (p<0.05). The two systems showed different tendency in the course of increased microleakage during 3 months. In Panavia F, microleakage increased slowly throughout the periods. In Super-Bond C&B, there was no significant increase of microleakage for 1 month, but there was statistically significant increase of microleakage for the next 2 months. For the mean microleakage for each period, in the 3-month group, microleakage of Super-Bond C&B was significantly greater than that of Panavia F. On the other hand, in the 6-month group, microleakage of Panavia F was significantly greater than that of Super-Bond C&B (p<0.05). Conclusion: Within the limitation of this study, water retention of two different bonding systems influence microleakage of resin cements. Further studies with the longer observation periods in viro are required in order to investigate water stability and the bonding durability of the resin cement. CLINICAL IMPLICATIONS Microleakage at the Cement-tooth interfaces did not necessarily result in the failure of the crowns. But it is considered to be a major factor influening the longerity of restorations. Further clinical approaches for decreasing the amount of microleakage are required.

Comparison of Convolutional Neural Network Models for Image Super Resolution

  • Jian, Chen;Yu, Songhyun;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • /
    • pp.63-66
    • /
    • 2018
  • Recently, a convolutional neural network (CNN) models at single image super-resolution have been very successful. Residual learning improves training stability and network performance in CNN. In this paper, we compare four convolutional neural network models for super-resolution (SR) to learn nonlinear mapping from low-resolution (LR) input image to high-resolution (HR) target image. Four models include general CNN model, global residual learning CNN model, local residual learning CNN model, and the CNN model with global and local residual learning. Experiment results show that the results are greatly affected by how skip connections are connected at the basic CNN network, and network trained with only global residual learning generates highest performance among four models at objective and subjective evaluations.

  • PDF

Chine Shape Optimization for Directional Stability at High Angle of Attack (고 받음각에서의 방향 안정성 향상을 위한 Chine 형상 최적설계)

  • Park, Hyeong-Uk;Park, Mee-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.825-834
    • /
    • 2008
  • Nose chine shape optimization study has been performed to maximize the directional stability at high angle of attack supersonic flow. Various chine shapes are generated using super ellipse equation. By numerically investigating the directional stability characteristics of those shapes, the baseline configuration for the shape optimization has been selected using the three-dimensional Navier-Stokes equations. The configuration is represented by the NURBS curves which can adjust the surface geometry by the control points. The response surfaces are constructed to obtain optimum shape which has high directional stability characteristics and lift-to-drag ratio. From this study, an efficient configuration design and optimization process which utilizes the parameter-based configuration generation techniques and approximation method has been established, then 29% improvement of the directional stability by strong vortexes from chine nose is accomplished.

Charge/discharge capacity and cycle salability of LiMn$_2$O$_4$cathode by sorts and volume of conductive agent (도전재 종류와 양에 따른 LiMn$_2$O$_4$정극의 충방전 용량 및 Cycle 안정성)

  • 정인성;박계춘;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.275-278
    • /
    • 1997
  • We investigated effectness of sort and volume of conductive agent to charge/discharge capacity of LiMn$_2$O$_4$. LiMn$_2$O$_4$is prepared by reacting stoichiometric mixture of LiOH . $H_2O$ and MnO$_2$(mole ratio 1 : 2) and heating at 80$0^{\circ}C$ for 24h, 36h, 48h, 60h and 72h. All LiMn$_2$O$_4$cathode active materials show spinel structure. Cathode active materials calcined at 80$0^{\circ}C$ for 36h, charge/discharge characteristics and cycle stability have remarkable advantages. Used that super-s-black and 20wt% as conductive agent in LiMn$_2$O$_4$, it is excellent than property of cathode used Acetylene black or mixture of Super-s-black and acetylene black at charge/discharge capacity and cycle stability. Also, specific efficiency of cathode is excellent as over 98% and that of first cycle is excellent as 92%.

  • PDF

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

A Study on Applicability and External / Internal Stability of true MSEW abutment with slab (순수형 보강토교대의 슬래브교에 대한 적용성 및 외적/내적 안정성 검토)

  • Park, Min-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, the applicability and external/internal stability of a MSEW abutment with a slab were investigated. Structural analysis of slab bridges between 10 ~ 20.0 m and thicknesses of 0.7 ~ 0.9 m was carried out to calculate the reaction forces due to dead and live loads acting on the bridge supports. The slab bridge with a length of 20.0 m satisfied the allowable contact pressure of 200 kPa for the true MSEW abutment. Because the external stability of the true MSEW abutment was dominated by the geometry of the MSE wall, the change in the factor of safety due to the load of the super-structure is small. Because the stiffness of the foundations is fixed and the load of the super-structure is increased, the factor of safety of the bearing capacity was reduced. As the load of the super-structure was increased, the horizontal earth pressure of the true MSEW abutment increased greatly. As a result, the pullout and fracture of the uppermost reinforcement, which are the factors of safety, did not meet the design criteria. Therefore, it is necessary to increase the pullout resistance and the long-term allowable tensile force of the reinforcement placed on the top of the reinforced soils to ensure efficient design and performance of a true MSEW abutment.

High-Temperature Stability Evaluation of Various Surface Treated Layers of Materials for Ultra-Super Critical Power Plants (초초임계압 발전용 소재의 표면처리층의 고온 안정성 평가)

  • Ryu, K.H.;Song, T.K.;Lee, J.H.;Kim, G.S.;Lee, S.H.;Urm, K.W.
    • Korean Journal of Materials Research
    • /
    • v.16 no.5
    • /
    • pp.329-335
    • /
    • 2006
  • In order to improve thermal efficiency of the fossil fuel power plants, we need to develop advanced materials with superior durability in the ultra-super critical state, which requires surface modifications for superior surface properties. In this study, we coated the Incoloy 901 and 12-17Cr steels for turbine buckets and valves with nitriding, boriding, and $Cr_3C_2-NiCr$ HVOF(high velocity oxygen flow) method. Then the samples were heat treated at $650^{\circ}C$ for 100 hours in vacuum. We analyzed the evolution behaviors of nitrides such as $Fe_3N,\;Fe_4N$, and CrN and borides such as FeB and $Fe_2B$ with XRD and SEM/EDS by comparing hardnesses and compositions of the coated layers before and after the heat treatments.

Wavelet-transform-based damping identification of a super-tall building under strong wind loads

  • Xu, An;Wu, Jiurong;Zhao, Ruohong
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.353-370
    • /
    • 2014
  • A new method is proposed in this study for estimating the damping ratio of a super tall building under strong wind loads with short-time measured acceleration signals. This method incorporates two main steps. Firstly, the power spectral density of wind-induced acceleration response is obtained by the wavelet transform, then the dynamic characteristics including the natural frequency and damping ratio for the first vibration mode are estimated by a nonlinear regression analysis on the power spectral density. A numerical simulation illustrated that the damping ratios identified by the wavelet spectrum are superior in precision and stability to those values obtained from Welch's periodogram spectrum. To verify the efficiency of the proposed method, wind-induced acceleration responses of the Guangzhou West Tower (GZWT) measured in the field during Typhoon Usagi, which affected this building on September 22, 2013, were used. The damping ratios identified varied from 0.38% to 0.61% in direction 1 and from 0.22% to 0.59% in direction 2. This information is expected to be of considerable interest and practical use for engineers and researchers involved in the wind-resistant design of super-tall buildings.