• Title, Summary, Keyword: System Engineering

Search Result 89,520, Processing Time 0.136 seconds

Software Reliability of Safety Critical FPGA-based System using System Engineering Approach

  • Pradana, Satrio;Jung, Jae Cheon
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.49-57
    • /
    • 2018
  • The main objective of this paper is come up with methodology approach for FPGA-based system in verification and validation lifecycle regarding software reliability using system engineering approach. The steps of both reverse engineering and re-engineering are carried out to implement an FPGA-based of safety critical system in Nuclear Power Plant. The reverse engineering methodology is applied to elicit the requirements of the system as well as gain understanding of the current life cycle and V&V activities of FPGA based-system. The re-engineering method is carried out to get a new methodology approach of software reliability, particularly Software Reliability Growth Model. For measure the software reliability of a given FPGA-based system, the following steps are executed as; requirements definition and measurement, evaluation of candidate reliability model, and the validation of the selected system. As conclusion, a new methodology approach for software reliability measurement using software reliability growth model is developed.

A Requirements Driven System Design Process for a Small System (소규모 시스템의 요건에 의한 설계)

  • Kim, Eui-Jung;Shin, Keun-Ha;Choi, Jae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.69-75
    • /
    • 2001
  • Systems engineering has been utilized in system development primarily for large-scale projects or commercial large-scale systems during the last several decades. We can understand why it would be useful to apply systems engineering to the development of a relatively small system. However, it is difficult to effectively carry out a project due to the complexity in applying the methods of systems engineering. To apply systems engineering to the development of a small system, the system engineering processes should be tailored. We established a requirements driven system design process(RDSDP) that can effectively carry out the system design far a small system. RDSDP is a system design process that treats all the requirements thoroughly and effectively. This is applied by the designer according to a standardized and systematized process during the first phase in design, in which system specifications are made. By using RDSDP, we can affect a reduction of the number of redesign phases in the process of the system design, shorten the period for to make specification, which will then cause the system to succeed in the actual application.

  • PDF

Autonomous Control System of Compact Model-helicopter

  • Kang, Chul-Ung;Jun Satake;Takakazu Ishimatsu;Yoichi Shimomoto;Jun Hashimoto
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.95-99
    • /
    • 1998
  • We introduce an autonomous flying system using a model-helicopter. A feature of the helicopter is that autonomous flight is realized on the low-cost compact model-helicopter. Our helicopter system is divided into two parts. One is on the helicopter, and the other is on the land. The helicopter is loaded with a vision sensor and an electronic compass including a tilt sensor. The control system on the land monitors the helicopter movement and controls. We firstly introduce the configuration of our helicopter system with a vision sensor and an electronic compass. To determine the 3-D position and posture of helicopter, a technique of image recognition using a monocular image is described based on the idea of the sensor fusion of vision and electronic compass. Finally, we show an experiment result, which we obtained in the hovering. The result shows the effectiveness of our system in the compact model-helicopter.

  • PDF

A Study on System Engineering Using Objected Oriented Approach (객체지향을 이용한 시스템엔지니어링에 관한 연구)

  • Lee, Jong-Woo;Shin, Duc-Ko
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.265-271
    • /
    • 2003
  • System engineering is one of the most important research topics in railway system for developing new railway system or improving existed system. The system engineering methods have been applied to innovate railway system. The system engineering activities, which are requirement analysis, functional analysis, system synthesis and analysis, sometimes requires longtime and tiresome works to fix some ideas level into some concrete forms. The system engineering using objected oriented method relieves the hard works of system engineering and clarifies the system engineering objects from its ambiguities. In this paper, we presented requirement model, analysis model and design model using objected oriented approach and showed the consistency of the system engineering work with an example of Automatic Train Control System.

  • PDF

The Best Line Choice for Transmission System Expansion Planning on the Side of the Highest Reliability Level

  • Sungrok Kang;Trungtinh Tran;Park, Jaeseok;Junmin Cha;Park, Daeseok;Roy Billinton
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.84-90
    • /
    • 2004
  • This paper presents a new method for choosing the best line for transmission system expansion planning considering the highest reliability level of the transmission system. Conventional methodologies for transmission system expansion planning have been mainly focused on economics, which is the minimization of construction costs. However, quantitative evaluation of transmission system reliability is important because successful operation and planning of an electric power system under the deregulated electricity market depends on transmission system reliability management. Therefore, it is expected that the development of methodology for choosing the best lines considering the highest transmission system reliability level while taking into account uncertainties of transmission system equipment is useful for the future. The characteristics and effectiveness of the proposed methodology are illustrated by the case study using a MRBTS.

A Proposal of Quality Assessment for System Model

  • Onozuka, Yuki;Ioki, Makoto;Shirasaka, Seiko
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.59-67
    • /
    • 2016
  • Recently, the increased complexity of systems has made systems engineering necessary. It is very useful for system designers to understand the whole context of the concerned system based on systems engineering. A system model can be used to describe the outcome of a system design. A system model describes the system from the viewpoint of the stakeholder's needs using the mutually exclusive and collectively exhaustive principle. A system model can be used to smoothly design a large and complicated system based on the systems engineering development process. Many companies and countries are attempting to apply model-based systems engineering, and the significance of the system model quality is increasing as system models are referenced during system development. In this paper, we propose a quality assessment method for ontology which is one of system models by focusing on the system development process. First, in this process, a system developer should explicitly show the relationship between viewpoints. Then, the system developer should select dependent rather than independent viewpoints. With dependent viewpoints, each viewpoint used to describe the system has some logical relationship. The set of viewpoints makes it possible to show, not only tangible and physical system parts, but also conceptual system parts. In this paper, we develop an ontological system model of a Japanese weather observation system. By comparing some ontological system models, we verify the effectiveness of explicitly describing the relationships between viewpoints and select dependent viewpoints.

A Study on the System Engineering Standard Applicable to Defense Program (방위사업에 적용 가능한 시스템 엔지니어링 표준에 대한 고찰)

  • Kim, Bo Hyeon;Hur, Jang Wook
    • Journal of the Korea Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The system engineering should be actively applied to successfully develop a complex and advanced weapon system, because the system engineering uses a multidisciplinary approach. Therefore, this study proposed a system engineering process for a successful weapon system development. According to the national standard policy, an IPT aspect system engineering standard must adapt the ISO/IEC/IEEE 15288. It also asks for tailoring with considering the IPT characteristics as a weapon system acquisition institution. The IPT aspect system engineering process to acquire a weapon system can be expressed with 3 process groups (Agreement, Technical Management, Technical) and 20 processes. There was a need for an institutional framework to hire retired experts from related organizations as consultants to apply the low-cost and high efficiency system engineering in the weapon system acquisition field.