• Title, Summary, Keyword: T형 벽체

Search Result 14, Processing Time 0.029 seconds

Confinement Range of Transverse Reinforcements for T-shaped Reinforced Concrete Walls (철근콘크리트 T형 벽체의 콘크리트 구속을 위한 횡철근의 배근범위)

  • 하상수;오영훈;최창식;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1001-1009
    • /
    • 2002
  • The objective of this study is to determine the range of confinement (or the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The range of confinement for transverse reinforcement is related to the location of neutral axis and determined by the magnitude and distribution of compressive strain. The compressive strain depends on the ratio of wall cross sectional area to the floor-plan area, the aspect ratio, configuration, the axial load, and the reinforcement ratios. By affection of flange, the neutral axis appears different depending on positive and negative forces and because of this reason, when web and flange are subjected to compressive stress, the range of confinement for the transverse reinforcement of T-shaped walls would shows different result. Therefore this experimental research focused on the structural characteristics of T-shaped walls and suggested the neutral axis depth through comparing the results of this study with sectional analysis.

Seismic Performance of T-Shaped PC Walls with Wet Cast Joint (현장타설 습식접합부가 있는 T형 PC 벽체의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.255-266
    • /
    • 2014
  • This paper investigates the seismic performance of T-shaped PC walls with a new vertical connections and wet cast joint. The load-displacement relationship, strength, ductility, failure mechanism, and deformation capacity of the T-shaped PC walls subjected to cyclic loading are verified. Test parameter is diagonal reinforcement of both flange and web wall panels to transfer shear strength. The longitudinal reinforcing steel bars placed edges of walls yield first and the ultimate deformation is terminated due to premature failure of connections. And diagonal reinforcements for shear transfer in walls are effective to restrain the wall crack. The strength and displacement obtained by the cross section analysis were very similar to the experimental data.

Evaluation of the Effective Width and Flexural Strength of the T-Stalled Walls (T형 벽체의 유효 폭 및 휨강도 평가)

  • 양지수;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.796-803
    • /
    • 2002
  • T-shaped walls have different strength, stiffness and ductility in the two opposite directions parallel to the web when subjected to horizontal in-plane loads. When the flange is in tension, the extent that the flange reinforcement contributes to the flexural strength will be subjected to shear-lag effect. Because of this shear-lag effect, the flange may not participate fully in the action with the web, and the effective flange width is needed for predicting the actual strength and stiffness of structures. The objective of this paper is to evaluate the effective flange width and actual strength of the T-shaped wall with Korean code specified detailing of the wall web. Three specimens were tested with cyclic lateral loading applied at top of the wall. A constant axial load of approximately 0.1f$\_$ck/$.$A$\_$g/ is maintained during the testing. Test results show that the effective flange width increases with increasing drift level, such that the entire overhanging flange of h/3 is effective at the maximum strength level. Therefore, the use of PCI or KBC(Korean Building Code) value of h/10 is unconservative with respect to detailing at the wall web boundary.

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

Development of Efficient Seismic Analysis Model using 2D T-Shape Rigid-body for Wall-Frame Structures with a Central Core (이차원 T형강체를 이용한 중심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • In this study, an efficient analytical model for the dynamic analysis of tall buildings with a shear wall-frame structural system has been proposed. A shear wall-frame structural system usually consists of a core wall showing flexural behavior and a frame presenting shear behavior. Therefore, the deformed shape of the shear wall-frame structural system is shown by the combination of flexural mode and shear mode. These characteristics should be considered when an efficient analytical model is developed. To this end, the effect of shear wall and frame on the dynamic behavior of a tall building with a dual system has been separately investigated. In this study, the structural characteristics of a separated individual shear wall model and the frame model without shear wall has been evaluated. In order to consider the effect of the shear wall in the frame model without shear wall, a rigid body was used instead of the shear wall. Each equivalent model for the separated shear wall part and frame part has been independently developed and two equivalent models were then combined to create an efficient analytical model for tall buildings with a shear wall-frame structural system. In order to verify the efficiency and accuracy of the proposed method, time history analyses of tall buildings with a shear wall-frame system were performed. Based on analytical results, it has been confirmed that the proposed method can provide accurate results, requiring significantly reduced computational time and memory.

Performance of High-Strength Concrete T-Shaped Structural Wall (고강도 콘크리트를 사용한 T형 벽체의 구조성능)

  • 강병국;하상수;이용택;이리형;천영수;윤영호;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.727-732
    • /
    • 2000
  • Four 1/2-scale wall specimens with flange are tested. The purpose of this study is to investigate experimentally structural behavior of flanged walls in wall slab system apartment buildings considering effective width of flange wall. Main variables are the length of web wall and concrete strength. Cyclic lateral loads are applied at the top of the walls. A constant axial load of approximately $0.1f_{ck}\cdotA_g$ is maintained during the testing. Test result shows that the capacity of the wall was governed by aspect ratios rather than concrete strengths and that initial stiffness and strength of specimens is increased with increasing the stiffness of web wall.

  • PDF

Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect (단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.

A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test (동적원심모형실험을 이용한 지진 시 역T형 옹벽의 관성력 영향 분석 사례 연구)

  • Jo, Seong-Bae;Ha, Jeong-Gon;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.4
    • /
    • pp.33-44
    • /
    • 2013
  • Mononobe-Okabe (M-O) theory is widely used for evaluating seismic earth pressure of retaining wall. It was originally developed for gravity walls, which have rigid behavior, retaining cohesionless backfill materials. However, it is used for cantilever retaining wall on the various foundation conditions. Considering only inertial force of the soil wedge as a dynamic force in the M-O method, inertial force of the wall does not take into account the effect on the dynamic earth pressure. This paper presents the theoretical background for the calculation of the dynamic earth pressure of retaining wall during earthquakes, and the current research trends are organized. Besides, the discrepancies between real seismic behavior and M-O method for inverted T-shape retaining wall with 5.4m height subjected to earthquake motions were evaluated using dynamic centrifuge test. From previous studies, it was found that application point, distribution of dynamic earth pressure and M-O method are needed to be re-examined. Test results show that real behavior of retaining wall during an earthquake has a different phase between dynamic earth pressure and inertial force of retaining wall. Moreover, when bending moments of retaining wall reach maximum values, the measured earth pressures are lower than static earth pressures and it is considered due to inertial effects of retaining wall.