• Title, Summary, Keyword: T-shaped transmission line

Search Result 7, Processing Time 0.038 seconds

Design and Fabrication of a BPF for 5.8 GHz Microwave Wireless Power Transmission (5.8 GHz 마이크로파 무선전력전송을 위한 BPF의 설계 및 구현)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.4
    • /
    • pp.88-91
    • /
    • 2015
  • In this paper, we have designed and fabricated a BPF (Band Pass Filter) for 5.8GHz Microwave Wireless Power Transmission. We $used{\lambda}g/2$ open-circuited stubs in addition to T-shaped transmission lines for the BPF. This BPF removes harmonics caused by diodes of RF-DC converter, and thus the RF-DC converter converts more RF power to the DC. The performance of the BPF was measured and shown through direct comparison of voltages converted by the doubler as a RF-DC Converter with and without the BPF.

Compact Band-notched UWB Antenna Design Based On Transmission Line Model

  • Zhu, Xiaoming;Yang, Xiaodong;Chen, Peng
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.338-343
    • /
    • 2015
  • In order to avoid the interference from existing narrowband communication systems, this paper proposes a compact band-notched UWB (ultra wideband) antenna with size of $12mm{\times}22mm{\times}1.6mm$. Transmission line model is applied to analyzing wide impedance matching characteristic of the modified base antenna, which has a gradual stepped impedance feeder structure. The proposed antenna realizes dual band-notched function by combining two biased T-shaped parasitic elements on the rear side with a window aperture on the radiation patch. The simulation current distributions of the antenna reflect resonant suppression validity of the two methods. In addition, the measured radiation characteristics demonstrate the proposed antenna prevents signal interference from WLAN (5.15-5.825GHz) and WiMAX (3.4-3.69GHz) effectively, and the measured patterns show the antenna omnidirectional radiation in working frequencies.

A Study On The Microstrip Slot Array Antenna Design (마이크로스트립 슬롯 배열 안테나 설계에 관한 연구)

  • 한석진;박익모;신철재
    • Proceedings of the IEEK Conference
    • /
    • /
    • pp.147-150
    • /
    • 1999
  • A T-shaped microstripline-fed printed slot array antenna having wide bandwidth, high gain, and narrow bandwidth is presented in this paper. The proposed antenna is analyzed by using the transmission line model method. We fabricated 4$\times$1 microstrip slot array antenna and measured its return loss and radiation pattern. The maximum bandwidth of this array antenna is from 1.43 ㎓ to 2.60 ㎓, which is 58.1% for the VSWR $\leq$ 2.

  • PDF

Microstrip Slot Array Antenna Design by Using Tansmission Line Model (전송선로 모델을 이용한 마이크로스트립 슬롯 배열 안테나 설계)

  • 한석진;박익모;신철재
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.4
    • /
    • pp.610-618
    • /
    • 2000
  • A T-shaped microstripline -fed printed slot antenna is anlayzed by using the transmission line model(TLM) in this paper. Microstrip-slotline junction is modeled by employing a transformer and the transformer turn ratio is derived empirically. The method is extended to the case of $1\times2,l\times4$array antennas. Return loss results obtained by using the transmission line model. The maximum measured results and demonstrated the usefulness of the transmission line model. The maximum bandwidths of a single antenna, $1\times2,l\times4$ array antennas are 28.5%, 47.8%, and 50.9%, respectively, for the VSWR$\leq2$. The gain of $1\times4$ array antenna is 7.97dBi and the beamwidth is about $27^{\circ}$.

  • PDF

Unequal Dual-band Wilkinson Power Divider (비대칭 이중대역 전력분배기)

  • Kim, Byung-Chul;Lee, Soo-Jung;Kim, Young
    • Journal of Digital Convergence
    • /
    • v.12 no.4
    • /
    • pp.343-348
    • /
    • 2014
  • This paper suggested a theoretical approach and an implementation for the design of an unequal Wilkinson power divider with a high dividing ratio operating at two-frequencies. The T-section transmission lines and the two-section of Monzon's theory are proposed to operate a dual-band application. To achieve the high dividing ratio divider, the high impedance line using a T-shaped structure and low impedance lines with periodic shunt open stubs are implemented. For the validation of this divider, a dual-band power divider with a high dividing ratio of 5 is simulated and measured at 1 GHz and 2 GHz. The measured performances of the divider are in good agreements with simulation results.

Design of 8 Channel Insertional pTx Array Coil for 3T Body Imaging (8 채널 삽입형 3T Body pTx Array 코일 설계)

  • Kim, Young Beom;Ryu, Yeunchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.546-550
    • /
    • 2014
  • In this research, we report all the elements are placed in the space above the patient table as a transmit coil to give optimized B1+ field for the body object. Through the simulations, we compared upper-and-lower parts combined 8 channel Tx array to upper only 8 channel Tx array and showed the utilities of B1+ shimming in multi-channel Tx body imaging at 3T. Half-cylinder shaped upper array shows weak B1+ field area around back of patient without B1+ shimming. After B1+ shimming, highly induced SAR places occurred in the arm region due to the close distance to the both end elements which were driven by very high RF current to enhance B1+ in back area. The proposed upper and lower combined array provides an enhanced homogeneous B1+ field in large ROI imaging as a result of shimming over the body size phantom. Through this research we proved the usefulness of the proposed insertional upper and lower parts combined transmit array for 3T body imaging.

Design of a Triple-Mode Bandpass Filter Using a Closed Loop Resonator

  • Myung, Jae-Yoon;Yun, Sang-Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.86-90
    • /
    • 2017
  • In this study, a novel third-order bandpass filter, which is based on a rectangular closed loop resonator, is presented. By adding a series resonator to the conventional loop resonator, the resonator's even resonant mode is split into two modes, while the odd resonant mode is not affected. Therefore, by varying the values of the series resonator elements, the resonant frequencies of two even modes can be determined independent of the odd-mode resonant frequency. In the proposed triple-mode filter design, instead of using a lumped series resonator, a T-shaped transmission line is coupled to the resonator via a small gap. To verify the design method, a filter is designed at 2.4 GHz with a bandwidth of 100 MHz. The improved performances of the proposed triple-mode filter are compared with those of the conventional dual mode filter.