• Title, Summary, Keyword: T-shaped walls

Search Result 24, Processing Time 0.054 seconds

Experimental Studies on Behaviors of T-Shaped Structural Walls with Different Concrete Compressive Strengths and Aspect Ratios (콘크리트 압축강도와 웨브길이 변화에 따른 T형 벽체의 거동에 관한 실험적 연구)

  • Yang, Ji-Soo;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.201-208
    • /
    • 2003
  • In domestic, bearing wall apartment building have not rectangular walls but irregular walls which are designed at walls of various cross-sectional shapes such as H-shaped, T-shaped, Box-shaped and L-shaped. In these irregular walls connected with rigid joint each other, one side walls of irregular walls is expected to show effective behavior for rigid-jointed the other side walls. Moreover, previous studies have focused on simplifying irregular walls into rectangular walls because of the complication in structural design and analysis. So studies for variables affecting behaviors of irregular walls, such as aspect ratios and compressive strength of concrete, are insufficient. The objective of this study is to evaluate the behaviors of T-shaped structural walls with different concrete compressive strengths and aspect ratios by experimental works. Results of this experimental study show that flange wall is contributed to increase the flexural strengths by the variation of concrete strengths and aspect ratios, and that it is needed to evaluate the effect width of flange wall for rational wall design.

A theoretical study on the factors for the seismic performance of RC T-shaped walls (철근콘크리트 T형 벽체의 내진성능 영향인자에 관한 해석적 연구)

  • 하상수;최창식;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.521-526
    • /
    • 2002
  • The seismic performance of structural walls subjected to the cyclic lateral loads are influenced by various factors, like sectional shape, aspect ratio, reinforcement ratio, arrangement of reinforcement, and axial load ratio etc. In this research, reinforced concrete structural walls with the T-shaped cross section were selected. The seismic performance of T-shaped wall was affected by the many (actors because T-shaped wall is irregular wall composed to two rectangular walls. Especially the seismic performance of T-shaped wall varies with the flange condition and the various factors including the flange condition were determined. Therefore, the objective of this study is to understand the factors to improve seismic performance of RC T-shaded tv using sectional analysis.

  • PDF

Seismic Performance of T-Shaped PC Walls with Wet Cast Joint (현장타설 습식접합부가 있는 T형 PC 벽체의 내진성능)

  • Lim, Woo-Young;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.255-266
    • /
    • 2014
  • This paper investigates the seismic performance of T-shaped PC walls with a new vertical connections and wet cast joint. The load-displacement relationship, strength, ductility, failure mechanism, and deformation capacity of the T-shaped PC walls subjected to cyclic loading are verified. Test parameter is diagonal reinforcement of both flange and web wall panels to transfer shear strength. The longitudinal reinforcing steel bars placed edges of walls yield first and the ultimate deformation is terminated due to premature failure of connections. And diagonal reinforcements for shear transfer in walls are effective to restrain the wall crack. The strength and displacement obtained by the cross section analysis were very similar to the experimental data.

Nonlinear FEM Analysis for Strength Characteristics of L-shaped Walls with Different Load-directions (가력방향이 다른 L형 벽체의 내력특성 평가를 위한 비선형 FEM 해석)

  • 조남선;하상수;최창식;오영훈;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.443-448
    • /
    • 2002
  • The cross sections of structural walls have various shapes such as T, L, and H-shaped. The L-shaped walls frequently appear in the comer of the structural plans. There are a little researches on the structural performance of L-shaped walls subjected to hi-directional loads. L-shaped wall subjected to hi-directional loads might be failed due to high compressive stress in the corner of the wall. L-shaped wall subjected to bi-directional(45$^{\circ}$ direction) loads was failed by the compressive failure more possible than that of one-directional(0$^{\circ}$ direction) loads. Therefore, in this paper, Two L-shaped wall specimens are chosen and presented. One is LCU specimen subjected to the bi-directional loads, the other is LCX specimen subjected to the one-directional loads. Also, the experimental results compared with the analytical results from nonlinear FEM analysis.

  • PDF

Evaluation of Structural Performance of RC T-shaped Walls with Different ratios of axial load and vertical reinforcement (압축력비와 수직철근비에 따른 RC T형 벽체의 구조성능 평가에 관한 해석적 연구)

  • 하상수;최창식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.403-408
    • /
    • 2003
  • The objective of this study is to understand the variables affected the confinement for the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The structural performance of T-shaped walls was advanced by the transverse reinforcement which restrained the concrete subjected to compressive stress. If the arrangement of transverse reinforcement was not suitable for the confinement, T-shaped walls happened the brittle failure by web crushing or bucking of vertical reinforcement at the compression zone. It is necessary to confine transverse reinforcement in order to prevent the these failure. But the location of neutral axis and the magnitude of ultimate strain vary according to the section shape, a ratio of axial load, a ratio of wall cross sectional area to the floor-plan area, an aspect ratio and the reinforcement ratio. Therefore, the objective of this research is to grasp the location of neutral axis and the range which needs for the confinement of transverse reinforcement through the results of the sectional analysis which varies the ratio of axial load and the ratio of vertical reinforcement.

  • PDF

A Study on Nonlinear FEM Analysis for the Effective Widths of T-shaped Structural Walls with Different Aspect Ratios (형상비가 다른 T형벽체의 유효폭 산정을 위한 비선형 FEM 해석)

  • 조남선;하상수;오영훈;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • /
    • pp.67-74
    • /
    • 2001
  • In domestic, irregular walls such as T, L, H and Box shapes are considered as rectangular wall in the design of bearing wall apartment building. The strengths of walls, therefore, can be underestimated in case of using the current design process. Irregular walls are connected to each other as rigid joint so that part of the load can be resisted by the wall perpendicular to the load direction. This resistance can be caused by the effective width of perpendicular wall. This additional resistance by the perpendicular wall increases the strength of structural walls. The objective of this study is to evaluate the effective widths of flanged walls with different aspect ratios by using FEM analyses. the results from finite element method are compared with effective flange widths of some code provisions.

  • PDF

Experimental Study of Structural Capacity Evaluation of RC T-shape Walls with the Confinement Effect (단부구속 효과에 따른 철근콘크리트 T형 벽체의 구조성능 평가에 관한 실험적 연구)

  • 하상수;윤현도;최창식;오영훈;이원호;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • /
    • pp.191-196
    • /
    • 2001
  • The structural performance of a shear wall subjected to lateral loads is influenced by many factors, such as sectional shape, aspect ratio, vertical and horizontal reinforcement, lateral confinement and axial compression, etc. This experimental research is focusing to investigate the structural performance of T-shaped walls with different confining reinforcement. Experimental results show that all specimens finally failed by the crushing of the concrete in the compression zone. Although the location and content of the lateral confinement is different, the results are very similar during the negative loading direction where the flange is compressed. However, when flange is subjected to tension, the location and content of the lateral confinement results in a large difference in the structural performance of T-shaped walls. Therefore, selection of location and content of the lateral confinement would be important aspect in the design of the nonsymmetric structural walls.

  • PDF

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Wind loads on T-shaped and inclined free-standing walls

  • Geurts, Chris;van Bentum, Carine
    • Wind and Structures
    • /
    • v.13 no.1
    • /
    • pp.83-94
    • /
    • 2010
  • Wind tunnel measurements on T-shaped free-standing walls and inclined free-standing walls have been carried out. Mean net pressure coefficients have been derived and compared with previous research. It was observed that the high loads at the free ends are differently distributed than those derived from the pressure coefficients for free-standing walls in EN 1991-1-4. In addition net pressure coefficients based on extreme value analysis have been obtained. The lack of correlation of the wind induced pressures at windward and leeward side result in lower values for the net pressure coefficients when based on extreme value analysis. The results of this wind tunnel study have been included in Dutch guidelines for noise barriers.

Confinement Range of Transverse Reinforcements for T-shaped Reinforced Concrete Walls (철근콘크리트 T형 벽체의 콘크리트 구속을 위한 횡철근의 배근범위)

  • 하상수;오영훈;최창식;이리형
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.1001-1009
    • /
    • 2002
  • The objective of this study is to determine the range of confinement (or the transverse reinforcement of the reinforced concrete structural walls with the T-shaped cross section subjected to cyclic lateral loads. The range of confinement for transverse reinforcement is related to the location of neutral axis and determined by the magnitude and distribution of compressive strain. The compressive strain depends on the ratio of wall cross sectional area to the floor-plan area, the aspect ratio, configuration, the axial load, and the reinforcement ratios. By affection of flange, the neutral axis appears different depending on positive and negative forces and because of this reason, when web and flange are subjected to compressive stress, the range of confinement for the transverse reinforcement of T-shaped walls would shows different result. Therefore this experimental research focused on the structural characteristics of T-shaped walls and suggested the neutral axis depth through comparing the results of this study with sectional analysis.