• Title, Summary, Keyword: T47D cell line

Search Result 24, Processing Time 0.035 seconds

Effect of Botulinum Toxin A on Proliferation and Apoptosis in the T47D Breast Cancer Cell Line

  • Bandala, Cindy;Perez-Santos, Jose Luis Martin;Lara-Padilla, Eleazar;Delgado Lopez, Ma. Guadalupe;Anaya-Ruiz, Maricruz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.891-894
    • /
    • 2013
  • The present study was performed to assess the activity of the botulinum toxin A on breast cancer cells. The T47D cell line was exposed to diverse concentrations of the botulinum toxin A and cell viability and apoptosis were estimated using MTT and propidium iodine/annexin V methods, respectively. Botulinum toxin A exerted greater cytotoxic activity in T47D cells in comparison with MCF10A normal cells; this appeared to be via apoptotic processes caspase-3 and -7. In conclusion, botulinum toxin A induces caspase-3 and -7 dependent apoptotic processes in the T47D breast cancer cell line.

Antiproliferative Effect of Trichostatin A and HC-Toxin in T47D Human Breast Cancer Cells

  • Joung, Ki-Eun;Kim, Dae-Kee;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.640-645
    • /
    • 2004
  • Histone deacetylase inhibitors are new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest. Trichostatin A, an antifungal antibiotic, and HC-toxin are potent and specific inhibitors of histone deacetylase activity. In this study, we have examined the antiproliferative activities of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer, T47D cells. Both trichostatin A and HC-toxin showed potent antiprolifer-ative efficacy and cell cycle arrest at $G_2/M$ in T47D human breast cancer cells in a dose-dependent manner. Trichostatin A caused potent apoptosis of T47D human breast cancer cells and trichostatin A-induced apoptosis might be involved in an increase of caspase-3/7 activity. HC-toxin evoked apoptosis of T47D cells and HC-toxin induced apoptosis might not be medi-ated through direct increase in caspase-3/7 activity. We have identified potent activities of anti-proliferation, apoptosis, and cell cycle arrest of trichostatin A and HC-toxin in estrogen receptor positive human breast cancer cell line T47D.

Shikonin Induced Necroptosis via Reactive Oxygen Species in the T-47D Breast Cancer Cell Line

  • Shahsavari, Zahra;Karami-Tehrani, Fatemeh;Salami, Siamak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7261-7266
    • /
    • 2015
  • Breast cancer, the most common cancer in the women, is the leading cause of death. Necrotic signaling pathways will enable targeted therapeutic agents to eliminate apoptosis-resistant cancer cells. In the present study, the effect of shikonin on the induction of cell necroptosis or apoptosis was evaluated using the T-47D breast cancer cell line. The cell death modes, caspase-3 and 8 activities and the levels of reactive oxygen species (ROS) were assessed. Cell death mainly occurred through necroptosis. In the presence of Nec-1, caspase-3 mediated apoptosis was apparent in the shikonin treated cells. Shikonin stimulates ROS generation in the mitochondria of T-47D cells, which causes necroptosis or apoptosis. Induction of necroptosis, as a backup-programmed cell death pathway via ROS stimulation, offers a new strategy for the treatment of breast cancer.

Comparative Evaluation of Silibinin Effects on Cell Cycling and Apoptosis in Human Breast Cancer MCF-7 and T47D Cell Lines

  • Jahanafrooz, Zohreh;Motameh, Nasrin;Bakhshandeh, Behnaz
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2661-2665
    • /
    • 2016
  • Silibinin is a natural polyphenol with high antioxidant and anticancer properties. In this study, its influence on two of the most commonly employed human breast cancer cell lines, MCF-7 and T47D, and one non-malignant MCF-10A cell line, were investigated and compared. Cell viability, the cell cycle distribution and apoptosis induction were analyzed by MTT and flow cytometry, respectively. The effect of silibinin on PTEN, Bcl-2, P21, and P27 mRNAs expression was also investigated by real-time RT-PCR. It was found that silibinin caused G1 cell cycle arrest in MCF-7 and MCF-10A cells but had no effect on the T47D cell cycle. Silibinin induced cytotoxic and apoptotic effects in T47D cells more than the MCF-7 cells and had no cytotoxic effect in MCF-10A cells under the same conditions. Silibinin upregulated PTEN in MCF-7 and caused slightly increased P21 mRNA expression in T47D cells and slightly increased PTEN and P21 expression in MCF-10A cells. Bcl-2 expression decreased in all of the examined cells under silibinin treatment. P27 mRNA expression upregulated in T47D and MCF-10A cells under silibinin treatment. PTEN mRNA in T47D and P21 and P27 mRNAsin MCF-7 were not affected by silibinin. These results suggest that silibinin has mostly different inhibitory effects in breast cancer cells and might be an effective anticancer agent for some cells linked to influence on cell cycle progression.

Targeting HSP90 Gene Expression with 17-DMAG Nanoparticles in Breast Cancer Cells

  • Mellatyar, Hassan;Talaei, Sona;Nejati-Koshki, Kazem;Akbarzadeh, Abolfazl
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.5
    • /
    • pp.2453-2457
    • /
    • 2016
  • Background: Dysregulation of HSP90 gene expression is known to take place in breast cancer. Here we used D,L-lactic-co-glycolic acid-polyethylene glycol-17-dimethylaminoethylamino-17-demethoxy geldanamycin (PLGA-PEG-17DMAG) complexes and free 17-DMAG to inhibit the expression of HSP90 gene in the T47D breast cancer cell line. The purpose was to determine whether nanoencapsulating 17DMAG improves the anti-cancer effects as compared to free 17DMAG. Materials and Methods: The T47D breast cancer cell line was grown in RPMI 1640 supplemented with 10% FBS. Encapsulation of 17DMAG was conducted through a double emulsion method and properties of copolymers were characterized by Fourier transform infrared spectroscopy and H nuclear magnetic resonance spectroscopy. Assessment of drug cytotoxicity was by MTT assay. After treatment of T47D cells with a given amount of drug, RNA was extracted and cDNA was synthesized. In order to assess HSP90 gene expression, real-time PCR was performed. Results: Taking into account drug load, IC50 was significant decreased in nanocapsulated 17DMAG in comparison with free 17DMAG. This finding was associated with decrease of HSP90 gene expression. Conclusions: PLGA-PEG-17DMAG complexes can be more effective than free 17DMAG in down-regulating of HSP90 expression, at the saesm time exerting more potent cytotoxic effects. Therefore, PLGA-PEG could be a superior carrier for this type of hydrophobic agent.

Fungal Taxol Extracted from Cladosporium oxysporum Induces Apoptosis in T47D Human Breast Cancer Cell Line

  • Raj, Kathamuthu Gokul;Sambantham, Shanmugam;Manikanadan, Ramar;Arulvasu, Chinnansamy;Pandi, Mohan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.16
    • /
    • pp.6627-6632
    • /
    • 2014
  • Purpose: The present study concerns molecular mechanisms involved in induction of apoptosis by a fungal taxol extracted from the fungus Cladosporium oxysporum in T47D human breast cancer cells. Materials and Methods: Apoptosis-induced by the fungal taxol was assessed by MTT assay, nuclear staining, DNA fragmentation, flow cytometry and pro- as well as anti-apoptotic protein expression by Western blotting. Results: Our results showed inhibition of T47D cell proliferation with an $IC_{50}$ value of $2.5{\mu}M/ml$ after 24 h incubation. It was suggested that the extract may exert its anti-proliferative effect on human breast cancer cell line by suppressing growth, arresting through the cell cycle, increase in DNA fragmentation as well as down-regulation of the expression of NF-${\kappa}B$, Bcl-2 and Bcl-XL and up-regulation of pro-apoptotic proteins like Bax, cyt-C and caspase-3. Conclusions: We propose that the fungal taxol contributes to growth inhibition in the human breast cancer cell through apoptosis induction via a mitochondrial mediated pathway, with possible potential as an anticancer therapeutic agent.

Synaptic Vesicle Protein 2 (SV2) Isoforms

  • Bandala, Cindy;Miliar-Garcia, A.;Mejia-Barradas, C.M.;Anaya-Ruiz, M.;Luna-Arias, J.P.;Bazan-Mendez, C.I.;Gomez-Lopez, M.;Juarez-Mendez, S.;Lara-Padilla, E.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.10
    • /
    • pp.5063-5067
    • /
    • 2012
  • New molecular markers of cancer had emerged with novel applications in cancer prevention and therapeutics, including for breast cancer of unknown causes, which has a high impact on the health of women worldwide. The purpose of this research was to detemine protein and mRNA expression of synaptic vesicle 2 (SV2) isoforms A, B and C in breast cancer cell lines. Cultured cell lines MDA-MB-231, SKBR3, T47D were lysed and their protein and mRNA expression analyzed by real-time PCR and western blot technique, respectively. SV2A, B proteins were identified in non-tumor (MCF-10A) and tumor cell lines (MDA-MB-231 and T47D) while SV2C only was found in the T47D cell line. Furthermore, the genomic expression was consistent with protein expression for a such cell line, but in MDA-MB-231 there was no SV2B genomic expression, and the SV2C mRNA and protein were not found in the non tumoral cell line. These findings suggest a possible cellular transdifferentiation to neural character in breast cancer, of possible relevance to cancer development, and point to possible use of SV2 as molecular marker and a vehicle for cancer treatment with botulinum toxin.

Formulation and Cytotoxicity of Ribosome-Inactivating Protein Mirabilis Jalapa L. Nanoparticles Using Alginate-Low Viscosity Chitosan Conjugated with Anti-Epcam Antibodies in the T47D Breast Cancer Cell Line

  • Wicaksono, Psycha Anindya;Sismindari, Sismindari;Martien, Ronny;Ismail, Hilda
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2277-2284
    • /
    • 2016
  • Ribosome-inactivating protein (RIP) from Mirabilis jalapa L. leaves has cytotoxic effects on breast cancer cell lines but is less toxic towards normal cells. However, it can easily be degraded after administration so it needs to be formulated into nanoparticles to increase its resistance to enzymatic degradation. The objectives of this study were to develop a protein extract of M. jalapa L. leaves (RIP-MJ) incorporated into nanoparticles conjugated with Anti-EpCAM antibodies, and to determine its cytotoxicity and selectivity in the T47D breast cancer cell line. RIP-MJ was extracted from red-flowered M. jalapa L. leaves. Nanoparticles were formulated based on polyelectrolyte complexation using low viscosity chitosan and alginate, then chemically conjugated with anti-EpCAM antibody using EDAC based on carbodiimide reaction. RIP-MJ nanoparticles were characterised for the particle size, polydispersity index, zeta potential, particle morphology, and entrapment efficiency. The cytotoxicity of RIP-MJ nanoparticles against T47D and Vero cells was then determined with MTT assay. The optimal formula of RIP-MJ nanoparticles was obtained at the concentration of RIP-MJ, low viscosity chitosan and alginate respectively 0.05%, 1%, and 0.4% (m/v). RIP-MJ nanoparticles are hexagonal with high entrapment efficiency of 98.6%, average size of 130.7 nm, polydispersity index of 0.380 and zeta potential +26.33 mV. The $IC_{50}$ values of both anti-EpCAM-conjugated and non-conjugated RIP-MJ nanoparticles for T47D cells (13.3 and $14.9{\mu}g/mL$) were lower than for Vero cells (27.8 and $33.6{\mu}g/mL$). The $IC_{50}$ values of conjugated and non-conjugated RIP-MJ for both cells were much lower than $IC_{50}$ values of non-formulated RIP-MJ (>$500{\mu}g/mL$).

Combined Treatment with 2-Deoxy-D-Glucose and Doxorubicin Enhances the in Vitro Efficiency of Breast Cancer Radiotherapy

  • Islamian, Jalil Pirayesh;Aghaee, Fahimeh;Farajollahi, Alireza;Baradaran, Behzad;Fazel, Mona
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8431-8438
    • /
    • 2016
  • Doxorubicin (DOX) was introduced as an effective chemotherapeutic for a wide range of cancers but with some severe side effects especially on myocardia. 2-Deoxy-D-glucose (2DG) enhances the damage caused by chemotherapeutics and ionizing radiation (IR) selectively in cancer cells. We have studied the effects of $1{\mu}M$ DOX and $500{\mu}M$ 2DG on radiation induced cell death, apoptosis and also on the expression levels of p53 and PTEN genes in T47D and SKBR3 breast cancer cells irradiated with 100, 150 and 200 cGy x-rays. DOX and 2DG treatments resulted in altered radiation-induced expression levels of p53 and PTEN genes in T47D as well as SKBR3 cells. In addition, the combination along with IR decreased the viability of both cell lines. The radiobiological parameter (D0) of T47D cells treated with 2DG/DOX and IR was 140 cGy compared to 160 cGy obtained with IR alone. The same parameters for SKBR3 cell lines were calculated as 120 and 140 cGy, respectively. The sensitivity enhancement ratios (SERs) for the combined chemo-radiotherapy on T47D and SKBR3 cell lines were 1.14 and 1.16, respectively. According to the obtained results, the combination treatment may use as an effective targeted treatment of breast cancer either by reducing the single modality treatment side effects.

Preparation and Evaluation of Chrysin Encapsulated in PLGA-PEG Nanoparticles in the T47-D Breast Cancer Cell Line

  • Mohammadinejad, Sina;Akbarzadeh, Abolfazl;Rahmati-Yamchi, Mohammad;Hatam, Saeid;Kachalaki, Saeed;Zohreh, Sanaat;Zarghami, Nosratollah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3753-3758
    • /
    • 2015
  • Background: Polymeric nanoparticles are attractive materials that have been widely used in medicine for drug delivery, with therapeutic applications. In our study, polymeric nanoparticles and the anticancer drug, chrysin, were encapsulated into poly (D, L-lactic-co-glycolic acid) poly (ethylene glycol) (PLGA-PEG) nanoparticles for local treatment. Materials and Methods: PLGA: PEG triblock copolymers were synthesized by ring-opening polymerization of D, L-lactide and glycolide as an initiator. The bulk properties of these copolymers were characterized using 1H nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy. In addition, the resulting particles were characterized by scanning electron microscopy. Results: The chrysin encapsulation efficiency achieved for polymeric nanoparticles was 70% control of release kinetics. The cytotoxicity of different concentration of pure chrysin and chrysin loaded in PLGA-PEG ($5-640{\mu}M$) on T47-D breast cancer cell line was analyzed by MTT-assay. Conclusions: There is potential for use of these nanoparticles for biomedical applications. Future work should include in vivo investigation of the targeting capability and effectiveness of these nanoparticles in the treatment of breast cancer.