• Title, Summary, Keyword: TCSC

Search Result 78, Processing Time 0.045 seconds

A Study on the Operating-Mode Characteristics of Two-Module Thyristor Controlled Series Compensator (Two-Module TCSC의 운전모드 특성 연구)

  • Jeong, Gyo-Beom
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1410-1416
    • /
    • 1999
  • This paper aims at investigating the operating-mode characteristics of two-module Thyristor Controlled Series Compensator (TCSC) as an equivalent of the multi-module TCSC in a simple three-phase power transmission system. The load flow program is developed to analyze the steady-state characteristics of two-module TCSC system and to find the thyristor firing angles for the required real power flow. The stability calculation program is developed with Poincare mapping theory. Simulation studies of the TCSC power transmission system using EMTP are performed to evaluate the transient characteristics of two-module TCSC as a real power flow controller and to rpove the results of the load flow calculation and the stability analysis. In the process of the study, the operating-mode characteristics of two-module TCSC are evaluated and compared to those of single-module TCSC.

  • PDF

An Investigation of Characteristics of the Operating Modes of Two-Module Thyristor Controlled Series Compensator

  • Chung, Gyo-Bum
    • Proceedings of the KIPE Conference
    • /
    • /
    • pp.903-908
    • /
    • 1998
  • This paper aims at investigating the characteristics of the operating modes of two-module Thyristor Controlled Series Compensator (TCSC) in a power transmission system. The operating modes of two-module TCSC are defined, analyzed and compared to those of single-module TCSC are defined, analyzed and compared to those of single-module TCSC. The load flow program, the stability calculation program and Electro Magnetic Transient Program (EMTP) simulation of a TCSC power transmission system are developed for the performance evaluation of two-module TCSC as a power flow controller. In the process of the simulation study, the potential problem areas of the TCSC power transmission system are identified.

  • PDF

Design and Implementation of a Laboratory Scale TCSC (모델급 TCSC의 설계 및 구현)

  • Dinh, Minh-Chau;Park, Sang-Min;Kim, Sung-Kyu;Park, Minwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.351-352
    • /
    • 2015
  • Thyristor-controlled series capacitor (TCSC) is a power electronic-based device that provides a fast and controllable series compensation of transmission line reactance. To match with laboratory facilities and for further research initiatives, a practical laboratory scale TCSC was designed and fabricated in this paper. The TCSC parameters were designed based on the terminologies such as percentage of compensation, boost factor and resonance factor. According to the design parameters, a prototype laboratory scale TCSC with a constant reactance controller was fabricated and tested. The measured results from the laboratory scale TCSC demonstrate the ability of the TCSC to provide rapid control of series reactance of a transmission line.

  • PDF

Design of GA-Fuzzy Precompensator of TCSC-PSS for Enhancement of Power System Stability (전력계통 안정도 향상을 위한 TCSC 안정화 장치의 GA-퍼지 전 보상기 설계)

  • Wang Yong-Peel;Chung Mun-Kyu;Chung Hyeng-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.2
    • /
    • pp.51-60
    • /
    • 2005
  • In this paper, we design the GA-fuzzy precompensator of a Power System Stabilizer for Thyristor Controlled Series Capacitor(TCSC-PSS) for enhancement of power system stability. Here a fuzzy precompensator is designed as a fuzzy logic-based precompensation approach for TCSC-PSS. This scheme is easily implemented by adding a fuzzy precompensator to an existing TCSC-PSS. And we optimize the fuzzy precompensator with a genetic algorithm for complements the demerit such as the difficulty of the component selection of fuzzy controller, namely, scaling factor, membership function and control rules. Nonlinear simulation results show that the proposed control technique is superior to conventional TCSC-PSS in dynamic responses over the wide range of operating conditions and in convinced robust and reliable in view of structure.

The Effect of Thyristor Controlled Series Capacitor(TCSC) on Power Transfer Capability (TCSC 투입계통의 송전용량 증대에 대한 연구)

  • Lee, Joo-Ho;Lee, Byoug-Jun
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.890-892
    • /
    • 1998
  • TCSC is a FACTS device that can control the active power flow and current of transmission lines by adjusting line impedances. In this paper, we study the effect of TCSC on power transfer capability. A static model of TCSC is implemented in the continuation power-flow(CPF) Program and the power transfer capability is measured using the CPF. The site of TCSC is selected to increase power transfer capability by the sensitivity information provided from the CPF. The effect of TCSC with various control mode is tested in IEEE New England 30-bus system.

  • PDF

Sensitivity Analysis of Oscillation Modes Occurred by Periodic Switching Operations of TCSC in Discrete Power Systems (이산 전력시스템에서 TCSC의 주기적 스위칭 동작에 의한 진동모드의 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.2
    • /
    • pp.162-168
    • /
    • 2008
  • In this paper, the RCF(Resistive Companion Form) analysis method is applied to analyze small signal stability of power systems including thyristor controlled FACTS(Flexible AC Transmission System) equipments such as TCSC(Thyristor Controlled Series Capacitor). The eigenvalue sensitivity analysis algorithm in discrete systems based on the RCF analysis method is presented and applied to the power system including TCSC. As a result of simulation, the RCF analysis method is very useful to precisely calculate the variations of eigenvalues or newly generated unstable oscillation modes after periodic switching operations of TCSC. Also the eigenvalue sensitivity analysis method based on the RCF analysis method enabled to precisely calculate eigenvalue sensitivity coefficients of controller parameters about the dominant oscillation mode after periodic switching operations in discrete systems. These simulation results are different from those of the conventional continuous system analysis method such as the state space equation and showed that the RCF analysis method is very useful to analyze the discrete power systems including periodically operated switching equipments such as TCSC.

SVC & TCSC Effects Power System in Multi-Machine (다기계통에서의 SVC와 TCSC특성 해석)

  • Sul, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.658-660
    • /
    • 1996
  • This paper prescribe the effects of SVC & TCSC in multi-machine power system. EMTP models of two FACTS controllers are proposed to analysis the basic characteristics of SVC & TCSC and the control signal of TCR is determined by rms value which was measured in system. The oscillation model of generator is proposed to analysis the damping effect and the most effective location of TCSC in multi-machine power system is identified by the residues associated with the natural oscillation modes. The 3 generator-9 bus model system is used to demonstrate the applicability of the proposed model.

  • PDF

Detailed Modeling of TCSC using PSCAD/EMTDC for Power System Analysis (계통 해석을 위한 TCSC의 PSCAD/EMTDC 상세 모델링)

  • Son, Ho-Ik;Nguyen, Thai-Thanh;Kim, Hak-Man;Han, Sangwook;Lee, Jae-gul;Shin, Jeonghoon
    • Proceedings of the KIEE Conference
    • /
    • /
    • pp.353-354
    • /
    • 2015
  • TCSC 적용시 송전선로의 송전용량 증대와 효율적인 송전계통 운영 가능하기 때문에 국외에서는 TCSC에 대한 많은 적용 사례와 연구가 진행되어 왔다. 이러한 이유로 국내에서도 송전계통의 안정성과 효율성 증대를 위한 TCSC 도입이 고려되고 있다. 본 논문에서는 리액턴스 제어, 전류 제어 또는 전력 제어, 전력동요 억제를 위한 제어 등 TCSC의 다양한 제어기를 포함하는 상세 모델을 PSCAD/EMTDC를 이용하여 모델링한다.

  • PDF

Eigenvalue Sensitivity Analysis of Discrete Power Systems Including Generator Controllers and TCSC (발전기 제어장치와 TCSC를 포함하는 이산 전력시스템의 고유치 감도해석)

  • Kim, Deok-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.12
    • /
    • pp.193-200
    • /
    • 2010
  • In this paper, the eigenvalue sensitivity analysis is calculated in the power system which is including both generator controllers such as Exciter, PSS and thyristor controlled FACTS devices in transmission lines such as TCSC. Exciter and PSS are continuously operating controllers but TCSC has a switching device which operates non-continuously. To analyze both continuous and non-continuous operating equipments, the RCF method one of the numerical analysis method in discrete time domain is applied using discrete models of the power system. Also the eigenvalue sensitivity calculation algorithm using state transition equations in discrete time domain is devised and applied to a sampled system. As a result of simulation, the eigenvalue sensitivity coefficients calculated using discrete system models in discrete time domain are changed periodically and showed different values compared to those of continuous system model in time domain by the effect of periodic switching operations of TCSC.

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.