• Title, Summary, Keyword: THM

Search Result 156, Processing Time 0.052 seconds

Characteristics of Trihalomethanes (THM) Formation for Groundwater in the Northeasthern Area of Cheju Island (제주도 북동부지역 지하수의 Trihalomethanes (THM) 생성 특성)

  • Song, Young-Cheol;Oh, Youn-Keun;Kam, Sang-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.83-90
    • /
    • 1999
  • This study was carried out to investigate the characteristics of trihalomethane (THM) formation from chlorination of groundwater in the northeastern area of Cheju Island. Effects of total organic carbon (TOC) and bromide in groundwater on the THM formation were studied. Samples were taken from two regions withe altitude. The concentrations of TOC and bromide in groundwater were higher at the regions of lower altitude, especially at the altitude below 50m. Generally the THM formation in GA region containing a high TOC was higher than that in GB region containing a relatively high bromide. At the altitude below 100m, the formation of total and brominated THM was highest at GB region. The most part of THM formation was brominated THM at GB region. The formation ratio of chloroform and brominated THM was similar to the others. Among the brominated THM, dibromochloromethane and bromoform in GB region were containing high bromide. Bromodichloromethane and dibromochloromethane in GA region were containing low bromide. At the altitude above 200m, chloroform was formed mainly. Comparing the ratio of brominated THM of total THM in Cheju Island with that in other areas, Seoul and Pusan, it can be konwn that the former showing 51.3% was much higher than the latter showing 6.7% and 28.8%, respectively.

  • PDF

THM Coupling Analysis for Decovalex-2015 Task B2 (Decovalex-2015 Task B2를 위한 THM 해석기법 개발 및 적용)

  • Kwon, Sangki;Lee, Changsoo;Park, Seung-Hun
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.556-567
    • /
    • 2015
  • The evaluation of THM coupling behavior in deep underground repository condition is essential for the long term safety and stability assessment of high-level radioactive waste repository. In order to develop reliable THM analysis techniques effectively, an international cooperation project, DECOVALEX, is carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment planned to be conducted by JAEA was modeled by the research teams from the participating countries. In this study, a THM coupling technique combining TOUGH2 and FLAC was developed and applied to 1 dimensional THM modeling, in which rock, buffer, and heater are considered. The results were compared with those from other research teams.

Trihalomethane Formation by Chlorine Dioxide in Case of Water Containing Bromide Ion (브롬이온을 함유한 상수 원수에 이산화염소 주입시 THM생성거동에 관한 연구)

  • Lee, Yoon-Jin;Lee, Hwan;Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.83-88
    • /
    • 1999
  • This study was carried out to examine the behavior of THM formation in water treated with chlorine dioxide where humic acid was used as THM precursor. THM was not detected in bromide-free water, but formed in water containing bromide. When 10 mg/l of chlorine dioxide was added to water containing 5 mg/l of humic acid and bromide respectively, 20.46 ${\mu}$g/l of THM was formed. It is postulated that chlorine dioxide oxidize bromide to hydrobromous acid, which subsequently reacted with humic acids similar to chlorine reaction. The formation of THM could be reduced at low pH. Among THM formed, CHBr$_3$ was the predominant species in the alkaline solution, while CHCl$_3$ in the acidic solution. A sample pretreated with chlorine dioxide for 24h before addition of chlorine showed a reduction of 75.1% in THM formation, compared with a sample not pretreated with chlorine dioxide and a sample treated by chlorine for 24h prior to addition of chlorine dioxide also showed a reduction of 37.8% in THM formation, compared with a sample not added with chlorine dioxide. It may explain that chlorine dioxide oxidizes directly a fraction of THM.

  • PDF

A Study on the Removal of THM(trihalomethane) (THM(trihalomethane)제거(除去) 대책(對策)에 관(關)한 연구(硏究))

  • Lee, Seok Hun;Hwang, Sun Jin;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.7 no.2
    • /
    • pp.34-38
    • /
    • 1993
  • An experimental study was conducted to investigate the effects of chlorine dioxide and ozone on reduction of THM(trihalomethane) formation. Precursor concentration, chlorine concentration, reaction time, pH, and temperature were governing compornents of THM formation. When other conditions are constant, THM formation increased linearly with precursor concentration increased. THM formation increased when pH increased from 5 to 9. In combined treatment with chlorine and chlorine dioxide, chlorine treatment after chlorine dioxide treatment made less THM than any other case does. Ozonation reduced THMFP(THM formation potential) of THM precursor. THMFP decreased exponentially with reaction time increased. Also biodegradability of humic acid was enhanced by ozonation.

  • PDF

Application of THM Predictive Model in Water Distribution System (국내 상수관로에 대한 THM 발생 예측모델의 적용)

  • Lee, Doo-Jin;Kim, Young-Il;Sohn, Jin-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.3-11
    • /
    • 2007
  • THM models have been developed in several researchers in order to better understand and manage the presence of THM in water distribution system. Several developed models were demonstrated in this study for estimating THM concentrations in target water distribution system. In order to investigate the performance of developed THM models, lab and field test were investigated. Predicted THM concentrations by all kind of models were showed good correlation with observed values. When the developed models were compared with lab and field test, the Rodriguez model during tested models was most predictive than the other models.

THM analysis for an in situ experiment using FLAC3D-TOUGH2 and an artificial neural network

  • Kwon, Sangki;Lee, Changsoo
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • The evaluation of Thermo-Hydro-Mechanical (THM) coupling behavior is important for the development of underground space for various purposes. For a high-level radioactive waste repository excavated in a deep underground rock mass, the accurate prediction of the complex THM behavior is essential for the long-term safety and stability assessment. In order to develop reliable THM analysis techniques effectively, an international cooperation project, Development of Coupled models and their Validation against Experiments (DECOVALEX), was carried out. In DECOVALEX-2015 Task B2, the in situ THM experiment that was conducted at Horonobe Underground Research Laboratory(URL) by Japan Atomic Energy Agency (JAEA), was modeled by the research teams from the participating countries. In this study, a THM coupling technique that combined TOUGH2 and FLAC3D was developed and applied to the THM analysis for the in situ experiment, in which rock, buffer, backfill, sand, and heater were installed. With the assistance of an artificial neural network, the boundary conditions for the experiment could be adequately implemented in the modeling. The thermal, hydraulic, and mechanical results from the modeling were compared with the measurements from the in situ THM experiment. The predicted buffer temperature from the THM modelling was about $10^{\circ}C$ higher than measurement near by the overpack. At the other locations far from the overpack, modelling predicted slightly lower temperature than measurement. Even though the magnitude of pressure from the modeling was different from the measurements, the general trends of the variation with time were found to be similar.

The Predictions of THM Concentration by Influencing Factors on the THM Formation and Applications in Advanced Drinking Water Treatment Process (THM 형성 영향인자에 의한 THM 농도예측 및 고도정수처리 공정에의 적용)

  • Rhim, Jung-A;Yoon, Jeong-Hyo;Park, Sun-Ho;Kim, Dong-Youn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.126-132
    • /
    • 1997
  • Trihalomethanes (THMs) are formed during the chlorination of waters containing precusors compounds, most commonly humic substances, changes in pH, TOC, temperature, precusor source and concentration chlorine dosage, bromide level and reaction time directly influence trihalomethane formation potential (THMFP) and kinetics. A standard THMFP experiment was conducted for each water under the following conditions ; $20^{\circ}C$, pH 7.4, reaction time of 48hr, TOC 5.7mgC/L. A series of kinetic experiments was conducted for each water to provide THM formation under varying conditions of reaction time, pH, temperature and TOC, chlorine dosage. The resultant mutiple parameter powre function predicts a THM which allows direct calculation of THM, is $[THM]=0.00039(pH-2.81)[TOC][Cl_2]^{0.321}\;t^{0.266}\;T^{0.286}$ Characteristics of raw water in advanced drinking water treatment pilot plant were, TOC levels ran from 4.42~6.84mgC/L, pH 7.2~7.8, temperature $7.0{\sim}18.4^{\circ}C$, UV-254 absorbance $0.057{\sim}0.85cm^{-1}$, THM levels ranged from 0.031~0.049mgC/L.

  • PDF

A Study on The Evalution of Influencing Factors in THM Analysis (THM 분석에 있어서의 영향인자에 관한 연구)

  • 남상호;이운기
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.2
    • /
    • pp.82-91
    • /
    • 1992
  • The examination of the pollutants originated from domestic sewage, industrial and agricutural activities the existences of some toxic heavy metals, organic matters and pathogenic microorganisms. A recent report of WHO brought out that such pollutants are in existence with above roughly 2,000 kinds of chemical substances and amongst them about 750 chemicals have been indentified by drinking water. And above 600 kinds of them are organic pollutants and in addition these include carcinogenic mutagenic and poisonous substances. This is not intended to embody a study of broad confined to various approaches on organic materials, and therefore will be THM produced on injection of chlorine at water filtration plant. To specify the relations between THM and factors having an effect upon THM such as TOC, Cl$_{2}$, Temperature, pH and reaction time, first of all the recovery ratio for analytical methods of THM (Head sapce, purge and trap, Liquid/ Liquid Extraction methods) was investigated. Provided that by using it,the correction coefficients are obtained, the accuracy of data might be able to be enhanced through analysis.The result of the experiments are given in the followings. 1) Among three kinds of analytical methods, recovery rate was higher in order of purge and trap Liquid/Liquid Extraction, Head space. There is no great difference in recovery rate among three methods. 2) The higher the concentration of TOC, the more the amount of THM. 3) The higher the reaction temperature, the more the amount of THM. 4) The longer the reaction time, the more the amount of THM. 5) The higher the pH, the more the amount of THM. 6) The higher the concectration of chlorine, the more the amount of THM.

  • PDF

Prediction of Trihalomethane (THM) Formation By Using Ultraviolet Absorbance (자외부흡광도(紫外部吸光度)를 이용한 Trihalomethane(THM) 생성량(生成量) 예측(豫測))

  • Hwang, Yong Woo;Cho, Bong Yun;Kim, Hyung Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.96-104
    • /
    • 1997
  • In-pipe formation of THM in water distribution systems was simulated by using the continuously and easily measurable parameters such as water temperature, residual chlorine and soluble organic compounds. The concentration of miscellaneous organics which could be the precuror of THM, was measured and represented as the absorbance of ultraviolet at wave length 260 nm. As the results, the developed equation in this study showed a more reliability on the change of THM than the normally regressed equation. In addition, the simulation was successfully fitted in the actual water treatment and distribution systems. Of the THM components, dibromochloromethane was the main cause dropping the overall reliability in the simulation.

  • PDF

Effect of Route of Trihalomethanes (THM) Administration on Renal Toxicity in Male Rat

  • Chung, Jin-Ho;Lee, Soo-Hwan
    • Archives of Pharmacal Research
    • /
    • v.14 no.2
    • /
    • pp.188-192
    • /
    • 1991
  • Single non-lethal doses of chloroform $(CHCL_3)$ dichlorobromomethane $(CHCL_2Br)$, dibromochloromethane $(CHCIBr_2)$, or bromoform $(CHBr_3)$ were administered to male rats. Routes of exposure including single intraperitional (ip) and subcutaneous (sc) injection were used in order to permit comparison of severity of THM effects and renal toxicity was assessed at varied times following treatment. On an equimolar basis, sc administration of $CHBr_3$ (either 12 or 3 mmoles/kg) is more effective at increasing KW/BW than ip $CHCI_3$ treatment. Plasma urea nitrogen (BUN) following ip THM injections are markedly increased with all four THM at 24 hours post treatment. BUN response to $CHCL_2Br$ and $CHCIBr_3$-effected BUN levels have essentially returned to those of vehicle control. THM sc treatment results in a BUN response similar to that seen following ip treatment, with only the time course being different. With the exception of $CHCL_3$, sc and ip-treatments appear to be equally effective in evoking absolute BUN elevations. These results suggest that THM administration induce renal toxicity dependent upon the route or exposure.

  • PDF