• Title/Summary/Keyword: Tool-Path Generation

Search Result 102, Processing Time 0.108 seconds

A Study on Tool Path Generation for Machining Impellers with 5-Axis Machining Center (5축 Machining Center를 이용한 임펠러 가공을 위한 공구경로 생성에 관한 연구)

  • 장동규;조환영;이희관;공영식;양균의
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.3
    • /
    • pp.83-90
    • /
    • 2004
  • This paper proposes a tool path generation method for machining impellers with 5-axis machining center. The shape of impeller is complex, being composed of pressure surface, suction surface and leading edge, and so on. The compound surface which is made of ruled surface such as pressure surface and suction surface and leading edge such as fillet surface, makes the tool path generation much complicated. To achieve efficient roughing, cutting area is divided into two region and then tool radius of maximum size that do not cause tool intereference is selected for shortening machining time. In finishing, accuracy is improved using side cutting for blade surface and point milling for leading edge.

Five-axis finishing tool path generation for a mesh blade based on linear morphing cone

  • Zhang, Rong;Hu, Pengcheng;Tang, Kai
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-275
    • /
    • 2015
  • Blisk is an essential component in aero engines. To maintain good aero-dynamic performance, one critical machining requirement for blades on blisk is that the generated five-axis tool path should be boundary-conformed. For a blade discretely modeled as a point cloud or mesh, most existing popular tool path generation methods are unable to meet this requirement. To address this issue, a novel five-axis tool path generation method for a discretized blade on blisk is presented in this paper. An idea called Linear Morphing Cone (LMC) is first proposed, which sets the boundary of the blade as the constraint. Based on this LMC, a CC curve generation and expansion method is then proposed with the specified machining accuracy upheld. Using the proposed tool path generation method, experiments on discretized blades are carried out, whose results show that the generated tool paths are both uniform and boundary-conformed.

Incomplete 2-manifold Mesh Based Tool Path Generation (불완전한 2차원다양체 메시기반 공추경로생성)

  • Lee Sung-gun;Kim Su-jin;Yang Min-yang;Lee Dong-yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3
    • /
    • pp.447-454
    • /
    • 2005
  • This paper presents a new paradigm for 3-axis tool path generation based on an incomplete 2-manifold mesh model, namely, an inexact polyhedron. When geometric data is transferred from one system to another system and tessellated for tool path generation, the model does not have any topological data between meshes and facets. In contrast to the existing polyhedral machining approach, the proposed method generates tool paths from an incomplete 2-manifold mesh model. In order to generate gouge-free tool paths, CL-meshes are generated by offsetting boundary edges, boundary vertices, and facets. The CL-meshes are sliced by machining planes and the calculated intersections are sorted, trimmed, and linked. The grid method is used to reduce the computing time when range searching problems arise. The method is fully implemented and verified by machining an incomplete 2-manifold mesh model.

An Algorithm for the Removing of Offset Loop Twists during the Tool Path Generation of FDM 3D Printer (FDM 3D 프린팅의 경로생성을 위한 옵?루프의 꼬임제거 알고리즘)

  • Olioul, Islam Md.;Kim, Ho-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 2017
  • Tool path generation is a part of process planning in 3D printing. This is done before actual printing by a computer rather than an AM machine. The mesh geometry of the 3D model is sliced layer-by-layer along the Z-axis and tool paths are generated from the sliced layers. Each 2-dimensional layer can have two types of printing paths: (i) shell and (ii) infill. Shell paths are made of offset loops. During shell generation, twists can be produced in offset loops which will cause twisted tool paths. As a twisted tool path cannot be printed, it is necessary to remove these twists during process planning. In this research, An algorithm is presented to remove twists from the offset loops. To do so the path segments are traversed to identify twisted points. Outer offset loops are represented in the counter-clockwise segment order and clockwise rotation for the inner offset loop to decide which twisted loop should be removed. After testing practical 3D models, the proposed algorithm is verified to use in tool path generation for 3D printing.

Scan Tool-Path Generation for Laser Pattern Machining (레이저 패턴 가공용 스캔 공구경로 생성)

  • Lee, Chang-Ho;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.300-304
    • /
    • 2011
  • This paper proposes an approach to generate tool-path for laser pattern machining. Considering the mechanical structure of a laser pattern machine, it is quite similar to that of a 2D milling machine. Based on the observation, one may try to utilize the tool-path generation methodologies of 2D milling for the laser pattern machining. However, it is not possible to generate tool-path without considering the technological requirements of laser pattern machining which are different from those of 2D milling. In this paper, we identify the technological requirement of laser pattern machining, and propose a proper tool-path generation methodology to satisfy the technological requirements. For the efficient generation of tool-path, this paper proposes a tool-path element computation method, which is based on the concept of a monotone chain.

Tool-path Generation for a Robotic Skull Drilling System (로봇을 이용한 두개골 천공 시스템의 공구 경로 생성)

  • Chung, YunChan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.243-249
    • /
    • 2013
  • This paper presents a tool-path generation methods for an automated robotic system for skull drilling, which is performed to access to some neurosurgical interventions. The path controls of the robotic system are classified as move, probe, cut, and poke motions. The four motions are the basic motion elements of the tool-paths to make a hole on a skull. Probing, rough cutting and fine cutting paths are generated for skull drilling. For the rough cutting path circular paths are projected on the offset surfaces of the outer top and the inner bottom surfaces of the skull. The projected paths become the paths on the top and bottom layers of the rough cutting paths. The two projected paths are blended for the paths on the other layers. Syntax of the motion commands for a file format is also suggested for the tool-paths. Implementation and simulation results show that the possibility of the proposed methods.

New 5-axis Tool Path Generation Algorithm Using CL Surface Transformation (CL면 변환을 이용한 새로운 5축 가공경로 생성방법)

  • Kim Su-Jin;Yang Min-Yang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7
    • /
    • pp.800-808
    • /
    • 2006
  • In this paper, the CL surface transformation approach that inversely deforms the 3-axis tool path generated on the deformed CL surface to a 5-axis tool path is introduced. The proposed CL surface transformation approach can be used if the orientation of the cutter is predefined. The CL surface based 3-axis tool path generation algorithms that have been improved well can be applied to the f-axis tool path generation.