• Title, Summary, Keyword: Total Artificial Heart

Search Result 105, Processing Time 0.03 seconds

Experimental Study of the "Korean Artificial Heart" in Calf (송아지를 이용한 한국형 인공심장의 동물실험에 관한 보고)

  • 서경필
    • Journal of Chest Surgery
    • /
    • v.22 no.2
    • /
    • pp.202-211
    • /
    • 1989
  • We experienced a series of animal experimental studies of the total artificial heart in 1988. So called, "Korean Heart* was used in this study, which is developed and fabricated in the Department of Biomedical Engineering, College of Med., S.N.U.. "Korean Heart" is a Rolling-Cylinder Motor-Driven type which is a newly developed electromechanical heart over the shortcomes of the previous artificial hearts, especially pneumatic type. The advantages of the "Korean Heart" are total implantability, quiet and smooth movement, small size fittable in oriental people, etc. The animal experiments were performed two times, as an assist device in sheep and total artificial heart implant experiment in calf weighing 100 kg. After total implantation, the artificial heart was well functioned in movement and hemodynamic control. So that, the calf was recovered excellently, which was able to stand up by herself and take an oral intake. Total survival time was 100 hours and the cause of death was a sudden pumping failure [electrical connection problem]. Several postoperative laboratory results almost within normal limits and no hemolysis, but in autopsy, the multiple thromboembolic findings were seen at the lung and kidney.n at the lung and kidney.

  • PDF

The Animal Experiments of Total Artificial Heart at the National Cardiovascular Center in Japan (일본국립순환기병센터형 완전 인공심장을 이용한 동물실험)

  • 박영환
    • Journal of Chest Surgery
    • /
    • v.27 no.10
    • /
    • pp.824-832
    • /
    • 1994
  • Recently we developed the concept of totally implantable electrohydraulic artificial heart. We tested the artificial heart which was drived by external compressive air in the calves. All three calves had pneumonia before surgery, so postoperative course was not only bad but also the results was not good. The first calf died severe pneumonia on 76th day, the second calf died from troublesome bleeding and uncertain allergic like reaction, and the third died because of bleeding. However, the performance of the artificial heart was good, and especially the blood contacting surface showed excellent hemocompatibility. The anatomic fitting was also very good even in the 35 Kg small newborn calf. During treadmill test, the first calf did not well tolerate for 1 minute but by the Full Fill Full Empty control method the artificial heart responsed well to the physiologic needs. In conclusion, the artificial heart had the very good hemocompatible surface, however, the volume of the artificial heart was a little deficient for the calf and the control algorithm needed further development.

  • PDF

Hemodynamic study of Pneumatic Artificial Heart Implanted in Calves (송아지에 이식한 공기구동형 인공심장의 혈역학적 연구)

  • 박표원
    • Journal of Chest Surgery
    • /
    • v.23 no.3
    • /
    • pp.438-451
    • /
    • 1990
  • Pneumatic total artificial heart[TAH] has been clinically applied for the purpose of permanent or temporary use followed by cardiac transplantation in the patients with end stage heart diseases. In spite of the good durability of the pneumatic TAH, thrombus formation, bleeding and infection resulted in death. The Tomasu heart, which is a type of pneumatic TAH, was used in this study. This model is a modified Jarvik heart and consists of atrial cuffs, outflow vascular grafts and thin-layer seamless diaphragm type of ventricles. Cardiac outputs of the left artificial heart were measured by Donovan`s mock circulation under variable conditions of driving parameters, and an experimental artificial heart implantation was performed in 4 calves to observe the changes of hemodynamic parameters in early postoperative period and hematologic and bio-chemical changes in a long-term survival case. In the mock circulation test, cardiac output of the heart was increased with the increase of the left atrial pressure and left driving pressure. Maximum cardiac output was obtained at the heart rate of 120 to 130/min and percent systole of 40 to 45Zo under the condition of a constant left driving pressure of 180mmHg and left atrial pressure of 10mmHg. During the first 24 hours of TAH pumping, driving pressure ranged from 178$\pm$5mmHg to 187$\pm$8mmHg for the left heart and from 58$\pm$6mmHg to 78$\pm$28mmHg for the right heart. The Mean arterial pressure significantly increased between 2 and 8 hours after the start of pumping. The survival time ranged from 27 hours to 46 days. The causes of death were respiratory failure in 2 cases, mechanical valve failure in one, and left ventricular outflow obstruction due to thrombus in a 46-day survival case. This study demonstrated that Tomasu artificial heart operated effectively during the first 24 hours of artificial heart pumping, but thrombus formation around the valve holding area was the main problem in long-term survival case.

  • PDF

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • ;K.B
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.87-96
    • /
    • 1992
  • In thIns paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is'presented. A trlleaflet polyurethane valve was simulated at the outflow orifice while the Inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-$\varepsilon$-E model. The SIMPLER algo rithm was used to solve the problem in primitive variables. The numerical solutions of the slulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the Inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller wlth the flap valve than with the trlleaflet valve. These resu1ts also suggest a correlation be- tween high turbulent stresses and the presence of thrombus In the vicinity of the valves in the total artificial hearts. The computed velocity vectors and trubulent stresses were comparable with previ ously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solo talons suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

Development of a microcontroller-based control system for a total artificial heart (완전이식 인공심장을 위한 제어시스템의 개발에 관한 연구)

  • Choi, Won-Woo;Park, Seong-Keun;Kim, Hee-Chan;Min, Byeong-Gu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.127-134
    • /
    • 1995
  • For use in patients with severe forms of heart disease for which no surgical repair is possible, development of artificial hearts has many importance in point of economics, medical and industrial applications. To provide a sufficient cardiac output to the physiological demands of circulatory systems is the objective of control systems for an electromechanical artificial heart, which is based on the stable controller design for the motor in the artificial heart. In this paper, an implantable microcontroller-based brushless DC motor control system with the implantability, reliability, and stability is introduced. The developed control system for the artificial heart has the following advantages: (1) It is possible to be implanted in a body by realizing the fundamental functions such as a motor speed detection, proportional-intergral control, timer, and PWM generation through a software programming. (2) Thus, the power consumed in the controller is reduced. (3) The reliability and stability are improved through the reduction of electronic parts and line connetions at the controller. The performance of the artificial hearts and control system developed was evaluated through a series of mock circulatory experiments and a reliability test for one and half years. A sheep with the artificial heart and control system was survived for three days.

  • PDF

Comparative Study on the Optimization Methods for a Motor Drive of Artificial Hearts

  • Pohlmann, Andre;LeBmann, Marc;Hameyer, Kay
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.193-199
    • /
    • 2012
  • Worldwide cardiovascular diseases are the major cause of death. Aside from heart transplants, which are limited due to the availability of human donor hearts, artificial hearts are the only therapy available for terminal heart diseases. For various reasons, a total implantable artificial heart is desirable. But the limited space in the human thorax sets rigorous restrictions on the weight and dimensions of the device. Nevertheless, the appropriate functionality of the artificial heart must be ensured and blood damage must be prevented. These requirements set further restrictions to the drive of this device. In the this paper, two optimization methods, namely, the manual parameter variation and Differential Evolution algorithm, are presented and applied to match the specifications of an artificial heart.

Design of A Human Model of the Moving-Actuator Type Total Artificial Heart

  • Chang, Jun-Keun;Min, Byoung-Goo
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.1
    • /
    • pp.65-70
    • /
    • 1997
  • A human version of Korean total artificial heart(TAM) was designed basso on the magnetic resonance imaging(MRI) data To obtain accurate measurement or human thoracic structure including the valvular sited we analyzed the dimensions of the natural heart of healthy persons and cardiomyopathy(CM) patients. The MRI findings were analyzed to measure the volume of the thoracic cavity that would be occupied by the TAM. The design upgrade of the mechanical performed was also performed with the computer aided design(CAD) system to develop a new version of Korean TAH.

  • PDF

Development of transcutaneous energy transmission system for implantable total artificial heart (인공심장용 무선에너지 전송 시스템의 개발)

  • 이우철;안재목;이상훈;민병구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • /
    • pp.762-767
    • /
    • 1991
  • To make electromechanical total artificial heart implantable inside the body, transcutaneous energy transmission system was designed and simulated by using PSPICE program. The fabricated system was evaluated by using Mock circulation system and showed comparable performance with the D.C power supply

  • PDF

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • Kim, S.H.;Chandran, K.B;Chen, C.J.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.123-126
    • /
    • 1992
  • In this paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is presented. A trileaflet polyurethane valve was simulated at the outflow orifice while the inflow orifice had a trileaflet or a flap valve. The numerical solutions of the simulated model show that regions of relative stasis and trapped vortices were smaller wi thin the ventricular chamber wi th the flap valve at the inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller with the flap valve than with the trileaflet valve. Analysis of the numerical solutions suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF