• Title, Summary, Keyword: Traction Control System (TCS)

Search Result 23, Processing Time 0.033 seconds

A Study on Development of Real-Time Simulator for Electric Traction Control System (TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구)

  • Kim, Tae Un;Cheon, Seyoung;Yang, Soon Young
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.

DEVELOPMENT OF A NETWORK-BASED TRACTION CONTROL SYSTEM, VALIDATION OF ITS TRACTION CONTROL ALGORITHM AND EVALUATION OF ITS PERFORMANCE USING NET-HILS

  • Ryu, J.;Yoon, M.;SunWoo, M.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.687-695
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units(ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electric throttle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Vehicle Traction Control System using Fuzzy Logic Theory (퍼지논리를 이용한 차량 구동력 제어 시스템)

  • 서영덕;여문수;이승종
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.138-145
    • /
    • 1998
  • Recently, TCS(Traction Control System) is attracting attention, because it maintains traction ability and steerability of vehicles on low-$\mu$ surface roads by controlling the slip rate between tire and road surface. The development of TCS control law is difficult due to the highly nonlinearity and uncertainty involved in TCS. A fuzzy logic approach is appealing for TCS. In this paper, fuzzy logic controller for TCS is introduced and evaluated by the computer simulation with 8 DOF vehicle model. The result indicate that the fuzzy logic TCS improves vehicle's stability and steerability.

  • PDF

Development of a Control Method of Traction Control System Using Vehicle Model (차량 모델을 이용한 구동력 제어 시스템 (TCS)의 제어 방법 개발)

  • Song Jeonghoon;Kim Heungseob;Lee Dae Hee;Son Minhyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8
    • /
    • pp.1203-1211
    • /
    • 2004
  • A traction control systems (TCSs) composed of either a wheel slip controller or a throttle valve controller or an integrated controller of both systems are proposed in this study. To validatethe dynamic characteristics of a vehicle and TCS, a full car model that can simulate the responses of both front wheel drive (2WD) and four wheel drive (4WD) vehicle is also developed. The wheel slip controller uses a sliding mode control scheme and the throttle valve is controlled by a PID controller. The results shows that tHe brake TCS and the engine TCS achieve rapid acceleration, and reduce slip angle on slippery road. When a vehicle is cornering and accelerating maneuver with the brake or engine TCS, understeer or oversteer occur, depending on the driving conditions. The integrated TCS prevents most of these problems and improves the stability and controllability of the vehicle.

Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS (Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구)

  • Ryu, Jung-Hwan;Yoon, Ma-Ru;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Development of Hardware-in-the loop Simulator for ABS/TCS (ABS 와 TCS 를 위한 HIL 시뮬레이터 개발에 관한 연구)

  • Lee, Han-Ju;Park, Yoon-Ki;Suh, Myung-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5
    • /
    • pp.83-90
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive system has greatly increased the need for tools which can be used to validate and test control system over their full range of operation. The objective of this paper is to develop a real time simulator of an anti-lock braking system and traction control system by the methodology of using hardware-in-the-loop simulation based on a personal computer. By use of this simulator, the analyses of commercial electronic control units and components for ABS/TCS were performed successfully. The simulator of this research can be applied to development of more advanced control system(such as vehicle dynamic control system) and other automotive system.

  • PDF

Development of Hardware-in-the-loop Simulator for TCS (TCS를 위한 HIL 시뮬레이터 개발에 관한 연구)

  • 서명원;이한주;박윤기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.194-205
    • /
    • 1999
  • The prevalence of microprocessor-based controllers in automotive systems has greatly increased the need for tools which can be used to validate and test control systems over their full range of operation. The objective of this paper is to develop a real time simulator of traction control system by the methodology of using hardware-in-loop simulation based on a personal computer. By use of this simulator, the analysis of commercial electronic control units and components for TCS were performed successfully. The simulator of this research can be applied to development of more advanced control systems(suck as vehicle dynamics control system) and other automotive system.

  • PDF

WHEEL SLIP CONTROL WITH MOVING SLIDING SURFACE FOR TRACTION CONTROL SYSTEM

  • Chun, K.;Sunwoo, M.
    • International Journal of Automotive Technology
    • /
    • v.5 no.2
    • /
    • pp.123-133
    • /
    • 2004
  • This paper describes a robust and fast wheel slip tracking control using a moving sliding surface technique. A traction control system (TCS) is the active safety system used to prevent the wheel slipping and thus improve acceleration performance, stability and steerability on slippery roads through the engine torque and/or brake torque control. This paper presents a wheel slip control for TCS through the engine torque control. The proposed controller can track a reference input wheel slip in a predetermined time. The design strategy investigated is based on a moving sliding surface that only contains the error between the reference input wheel slip and the actual wheel slip. The used moving sliding mode was originally designed to ensure that the states remain on a sliding surface, thereby achieving robustness and eliminating chattering. The improved robustness in driving is important due to changes, such as from dry road to wet road or vice versa which always happen in working conditions. Simulations are performed to demonstrate the effectiveness of the proposed moving sliding mode controller.

VEHICLE LONGITUDINAL AND LATERAL STABILITY ENHANCEMENT USING A TCS AND YAW MOTION CONTROLLER

  • Song, J.H.;Kim, H.S.;Kim, B.S.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • This paper proposes a traction control system (TCS) that uses a sliding mode wheel slip controller and a PID throttle valve controller. In addition, a yaw motion controller (YMC) is also developed to improve lateral stability using a PID rear wheel steering angle controller. The dynamics of a vehicle and characteristics of the controllers are validated using a proposed full-car model. A driver model is also designed to steer the vehicle during maneuvers on a split ${\mu}$ road and double lane change maneuver. The simulation results show that the proposed full-car model is sufficient to predict vehicle responses accurately. The developed TCS provides improved acceleration performances on uniform slippery roads and split ${\mu}$ roads. When the vehicle is cornering and accelerating with the brake or engine TCS, understeer occurs. An integrated TCS eliminates these problems. The YMC with the integrated TCS improved the lateral stability and controllability of the vehicle.

Engine Control TCS using Throttle Angle Control and Estimated Load Torque (스로틀 개도 제어와 부하토크 추정을 이용한 엔진 제어 방식 TCS)

  • 강상민;윤마루;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.139-147
    • /
    • 2004
  • The purpose of engine control TCS is to regulate engine torque to keep driven wheel slip in a desired range. In this paper, engine control TCS using sliding mode control law based on engine model and estimated load torque is proposed. This system includes a two-level controller. Slip controller calculates desired wheel torque, and engine torque controller determines throttle angle for engine torque corresponding to desired wheel torque. Another issue is to measure load torque for model based controller design. Luenberger observer with state variables of load torque and engine speed solves this problem as estimating load torque. The performance of controller and observer is certificated by simulation using 8-degree vehicle model, Pacejka tire model, and 2-state engine model. The simulation results in various maneuvers during slippery and split road conditions showed that acceleration performance and ability of the vehicle with TCS is improved. Also, the load torque observer could estimate real load torque very well, so its performance was proved.