• Title, Summary, Keyword: Transformation Operator

Search Result 78, Processing Time 0.03 seconds

Classes of Multivalent Functions Defined by Dziok-Srivastava Linear Operator and Multiplier Transformation

  • Kumar, S. Sivaprasad;Taneja, H.C.;Ravichandran, V.
    • Kyungpook Mathematical Journal
    • /
    • v.46 no.1
    • /
    • pp.97-109
    • /
    • 2006
  • In this paper, the authors introduce new classes of p-valent functions defined by Dziok-Srivastava linear operator and the multiplier transformation and study their properties by using certain first order differential subordination and superordination. Also certain inclusion relations are established and an integral transform is discussed.

  • PDF

SOME SYMMETRY PRESERVING TRANSFORMATION IN POPULATION GENETICS

  • Choi, Won
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.757-762
    • /
    • 2009
  • In allelic model $X\;=\;(x_1,\;x_2,\;{\cdots},\;x_d)$, $$M_f(t)\;=\;f(p(t))\;-\;{\int}^t_0\;Lf(p(t))ds$$ is a P-martingale for diffusion operator L under the certain conditions. We can also obtain a new diffusion operator $L^*$ for diffusion coefficient and we prove that unique solution for $L^*$-martingale problem exists. In this note, we define new symmetric preserving transformation. Uniqueness for martingale problem and symmetric property will be proved.

  • PDF

On Sufficient Conditions for Certain Subclass of Analytic Functions Defined by Convolution

  • Sooriyakala, Paramasivam;Marikkannan, Natarajan
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.1
    • /
    • pp.47-55
    • /
    • 2009
  • In the present investigation sufficient conditions are found for certain subclass of normalized analytic functions defined by Hadamard product. Differential sandwich theorems are also obtained. As a special case of this we obtain results involving Ruscheweyh derivative, S$\u{a}$l$\u{a}$gean derivative, Carlson-shaffer operator, Dziok-Srivatsava linear operator, Multiplier transformation.

Applicability of Projective Transformation for Constructing Correspondences among Corners in Building Facade Imagery (건물벽면 영상내 코너점의 대응관계 구성을 위한 사영변환행렬의 적용성)

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.709-717
    • /
    • 2014
  • The objective of this study is to analyze the degree of correspondences among corners found in building facade imagery when the projective transformation parameters are applied to. Additionally, an appropriate corner detection operator is determined through experiments. Modeling of the shape of a building has been studied in numerous approaches using various type of data such as aerial imagery, aerial lidar scanner imagery, terrestrial imagery, and terrestrial lidar imagery. This study compared the Harris operator with FAST operator and found that the Harris operator is superior in extracting major corner points. After extracting corners using the Harris operator and assessing the degree of correspondence among corners in difference images, real corresponding corners were found to be located in the closest distance. The experiment of the projective transformation with varying corners shows that more corner control points with a good distribution enhances the accuracy of the correspondences.

INTEGRAL KERNEL OPERATORS ON REGULAR GENERALIZED WHITE NOISE FUNCTIONS

  • Ji, Un-Cig
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.601-618
    • /
    • 2000
  • Let (and $g^*$) be the space of regular test (and generalized, resp.) white noise functions. The integral kernel operators acting on and transformation groups of operators on are studied, and then every integral kernel operator acting on can be extended to continuous linear operator on $g^*$. The existence and uniqueness of solutions of Cauchy problems associated with certain integral kernel operators with intial data in $g^*$ are investigated.

  • PDF

Width Operator for Resonance Width Determination

  • 박태준
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.2
    • /
    • pp.198-200
    • /
    • 1996
  • The resonance width may be directly determined by solving an eigenvalue equation for width operator which is derived in this work based on the method of complex scaling transformation. The width operator approach is advantageous to the conventional rotating coordinate method in twofold; 1) calculation can be done in real arithmetics and, 2) so-called θ-trajectory is not required for determining the resonance widths. Application to one- and two-dimensional model problems can be easily implemented.

  • PDF

Weakly Hyponormal Composition Operators and Embry Condition

  • Lee, Mi-Ryeong;Park, Jung-Woi
    • Kyungpook Mathematical Journal
    • /
    • v.49 no.4
    • /
    • pp.683-689
    • /
    • 2009
  • We investigate the gaps among classes of weakly hyponormal composition operators induced by Embry characterization for the subnormality. The relationship between subnormality and weak hyponormality will be discussed in a version of composition operator induced by a non-singular measurable transformation.

A CERTAIN SUBCLASS OF MEROMORPHIC FUNCTIONS WITH POSITIVE COEFFICIENTS ASSOCIATED WITH AN INTEGRAL OPERATOR

  • Akgul, Arzu
    • Honam Mathematical Journal
    • /
    • v.39 no.3
    • /
    • pp.331-347
    • /
    • 2017
  • The aim of the present paper is to introduce a new subclass of meromorphic functions with positive coefficients defined by a certain integral operator and a necessary and sufficient condition for a function f to be in this class. We obtain coefficient inequality, meromorphically radii of close-to-convexity, starlikeness and convexity, convex linear combinations, Hadamard product and integral transformation for the functions f in this class.