• Title, Summary, Keyword: Transient global ischemia

Search Result 35, Processing Time 0.07 seconds

Neuroprotective effect of Hexane fraction of A0054 on Delayed Neuronal Death after Transient global Ischemia in Gerbil Hippocampus

  • Kim, Haw-Jung;Lee, Sung-Jin;Je, Kang-Hoon;Mar, Woong-Chon
    • Proceedings of the PSK Conference
    • /
    • /
    • pp.145.1-145
    • /
    • 2003
  • Several lines of recent evidences have shown that several pro-inflammatory genes or mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 and cytokines (e.g., tumor necrosis factor $\alpha$ and interleukin-1$\beta$), are strongly expressed in the ischemic brain. Inflammation is now recognized as a significant contributing mechanism in cerebral ischemia because anti-inflammatory compounds or inhibitors of iNOS and cyclooxygenase-2 have been proven to reduce ischemic brain damage. (omitted)

  • PDF

Cardioprotective Effect of Calcium Preconditioning and Its Relation to Protein Kinase C in Isolated Perfused Rabbit Heart (적출관류 토끼 심장에서 칼슘 전처치에 의한 심근보호 효과와 Protein Kinase C와의 관계)

  • 김용한;손동섭;조대윤;양기민;김호덕
    • The Korean Journal of Thoracic and Cardiovascular Surgery
    • /
    • v.32 no.7
    • /
    • pp.603-612
    • /
    • 1999
  • Background : It has been documented that brief repetitive periods of ischemia and reperfusion (ischemic preconditioning, IP) enhances the recovery of post-ischemic contractile function and reduces infarct size after a longer period of ischemia. Many mechanisms have been proposed to explain this process. Recent studies have suggested that transient increase in the intracellular calcium may have triggered the activation of protein kinase C(PKC); however, there are still many controversies. Accordingly, the author performed the present study to test the hypothesis that preconditioning with high concentration of calcium before sustained subsequent ischemia(calcium preconditioning) mimics IP by PKC activation. Material and Method : The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) Method: The isolated hearts from the New Zealand White rabbits(1.5∼2.0 kg body weight) were perfused with Tyrode solution by Langendorff technique. After stabilization of baseline hemodynamics, the hearts were subjected to 45-minute global ischemia followed by a 120-minute reperfusion with IP(IP group, n=13) or without IP(ischemic control, n=10). IP was induced by single episode of 5-minute global ischemia and 10-minute reperfusion. In the Ca2+ preconditioned group, perfusate containing 10(n=10) or 20 mM(n=11) CaCl2 was perfused for 10 minutes after 5-minute ischemia followed by a 45-minute global ischemia and a 120-minute reperfusion. Baseline PKC was measured after 50-minute perfusion without any treatment(n=5). Left ventricular function including developed pressure(LVDP), dP/dt, heart rate, left ventricular end-diastolic pressure(LVEDP) and coronary flow(CF) was measured. Myo car ial cytosolic and membrane PKC activities were measured by 32P-${\gamma}$-ATP incorporation into PKC-specific pepetide. The infarct size was determined using the TTC (tetrazolium salt) staining and planimetry. Data were analyzed using one-way analysis of variance(ANOVA) variance(ANOVA) and Tukey's post-hoc test. Result: IP increased the functional recovery including LVDP, dP/dt and CF(p<0.05) and lowered the ascending range of LVEDP(p<0.05); it also reduced the infarct size from 38% to 20%(p<0.05). In both of the Ca2+ preconditioned group, functional recovery was not significantly different in comparison with the ischemic control, however, the infarct size was reduced to 19∼23%(p<0.05). In comparison with the baseline(7.31 0.31 nmol/g tissue), the activities of the cytosolic PKC tended to decrease in both the IP and Ca2+ preconditioned groups, particularly in the 10 mM Ca2+ preconditioned group(4.19 0.39 nmol/g tissue, p<0.01); the activity of membrane PKC was significantly increased in both IP and 10 mM Ca2+ preconditioned group (p<0.05; 1.84 0.21, 4.00 0.14, and 4.02 0.70 nmol/g tissue in the baseline, IP, and 10 mM Ca2+ preconditioned group, respectively). However, the activity of both PKC fractions were not significantly different between the baseline and the ischemic control. Conclusion: These results indicate that in isolated Langendorff-perfused rabbit heart model, calcium preconditioning with high concentration of calcium does not improve post-ischemic functional recovery. However, it does have an effect of limiting(reducing) the infart size by ischemic preconditioning, and this cardioprotective effect, at least in part, may have resulted from the activation of PKC by calcium which acts as a messenger(or trigger) to activate membrane PKC.

  • PDF

Neuroprotecticve Effect of Rhei Rhizoma on Transient Global Ischemia in Gerbil (Gerbil의 전뇌허혈에 대한 대황의 신경보호효과)

  • Bum-Hoi, Kim;Hyuk-Sang, Jung;Ran, Won;Ji-Ho, Park;Chul-Hun, Kang;Nak-Won, Sohn
    • The Journal of Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.74-84
    • /
    • 2002
  • 목적 : 본 실험에서는 gerbil을 이용한 전뇌허혈 동물모델에서 뇌허혈손상 직후 지연성 뇌손상에 대한 대황의 방어효과와 Apoptosis 과정중의 Bax와 Bcl-2 단백질에 대한 조절작용을 관찰하고, TUNEL 염색법을 통하여 대황이 gerbil hippocampus CAl영역의 pyramidal neuron의 세포사에 미치는 영향과 PCl2세포를 이용한 세포배양 모델에서의 대황의 신경방어 효과를 관찰하였다. 방법 : Mongolian gerbil의 총경동맥을 5분간 폐색하여 가역성 전뇌허혈을 유발시킨 후 대황의 전탕액을 하루에 한번 경구 투여하였다. 대황의 신경 보호 효과는 수술 7일 후에 cresyl violet으로 염색하여, 살아있는 신경 세포의 수를 세어 측정하였다. 또, 수술 3일 후에는 면역조직화학적 방범을 통하여 Bax. Bcl-2단백질의 발현과 대황의 신경보호 효과와의 관련성을 알아보았다. 결과: 가역적 전뇌허혈이 일어난 동물군의 경우 hippocampus의 CAl 영역에서 살아있는 신경세포의 수는 $51.0{\pm}2.5개{\;}/mm$에 불과하였으나, 그에 비해 수술 후 7일간 대황을 투여한 동물군은 $106.2{\pm}2.5개{\;}/mm$로 살아 있는 신경세포수가 크게 증가하였다. Apoptosis를 촉진하는 단백질인 Bax의 발현은 3일간 대황을 투여한 동물군의 경우 hippocampus의 CAl 영역에서 현저하게 저해되었고, Apoptosis를 억제하는 Bcl-2 단백질의 발현은 변화가 없었다. TUNEL assay를 통하여 살펴본 결과 대황 투여군의 apoptotic 신경세포사가 감소하였으며 이는 Bax protein의 발현과 유사한 양상을 나타내었다. 결론:대황이 Bax 단백질의 발현을 억제하여 상대적으로 Bax/Bcl-2 자연적 세포사를 억제하여 Mogolian gerbil의 가역성 전뇌허혈 모델에서 신경보호효과를 나타내는 것으로 사료된다.

  • PDF

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF