• Title, Summary, Keyword: Traumatic brain injury

Search Result 217, Processing Time 0.05 seconds

Analysis of Traumatic Brain Injury Using a Finite Element Model

  • Suh Chang-Min;Kim Sung-Ho;Oh Sang-Yeob
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1424-1431
    • /
    • 2005
  • In this study, head injury by impact force was evaluated by numerical analysis with 3-dimensional finite element (FE) model. Brain deformation by frontal head impact was analyzed to evaluate traumatic brain injury (TBI). The variations of head acceleration and intra-cranial pressure (ICP) during the impact were analyzed. Relative displacement between the skull and the brain due to head impact was investigated from this simulation. In addition, pathological severity was evaluated according to head injury criterion (HIC) from simulation with FE model. The analytic result of brain damage was accorded with that of the cadaver test performed by Nahum et al.(1977) and many medical reports. The main emphasis of this study is that our FE model was valid to simulate the traumatic brain injury by head impact and the variation of the HIC value was evaluated according to various impact conditions using the FE model.

Traumatic Brain Injury and Sleep Disorder (외상성 뇌손상과 수면장애)

  • Kim, Young-Chul
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.2
    • /
    • pp.97-101
    • /
    • 1999
  • Sleep disorders are relatively common occurrence after traumatic brain injury. Sleep disturbances often resulted in difficulties in sleep onset and sleep maintenance, nonrestorative after sleep, poor daytime performances and poor individual sense of wellbeing. Unfortunately, there has been minimal attention paid to this common and disabling sequela of brain injury. Better undertanding about problem, pathophysiology and treatment of sleep disorder after traumatic brain injury will improve the cognitive function, social adjustment and rehabilitation for injured patients. Also it may be helpful to reduce traumatic brain injury in patients with sleep apnea.

  • PDF

Serologic Markers of Excessive Callus formation in Traumatic Brain Injury Patient (다발성 환자에서 뇌 손상이 동반된 장골 골절 시 가골 형성 촉진예측을 위한 혈액검사에 대한 고찰)

  • Park, Hee-Gon;Kim, Yeon-Jun
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2013
  • Purpose: Among patients with multiple traumatic fractures, a tendency to form more callus exists in groups with multiple fractures combined with traumatic brain injury. This retrospective study evaluated the hematologic factors that might be useful to predict callus formation by comparing serologic tests and clinical and radiologic results in two groups. Methods: From January 2000 to December 2010, patients with femur shaft fractures were divided in two groups: one without traumatic brain injury (control group: 32 cases), and the other with traumatic brain injury (study group: 44 cases). We evaluated routine serologic exams and the amount of callus formation during the follow-up period. Results: Only the alkaline phosphatase level was statistically different between the two groups, not the White blood cell count, C-reactive protein, total calcium, and lactate dehydrogenase level. The amount of callus formation on the antero-posterior radiograph at the last follow up period was 74.9% in the study group and 42.1% in the control group. Then lateral radiograph showed 73.2% callus formation rate in the study group and 31.8% in the control group. Conclusion: In routine serologic exams, the two groups had no significant differences, except for the alkaline phosphatase level. The group with traumatic brain injury had much more callus formation, but there was no reliable factor to predict callus formation on the routine serologic exam.

The Evaluation and Treatment of Post-Traumatic Stress Disorder and Acute Stress Disorder After Traumatic Brain Injury (외상성 뇌손상이후 발생하는 외상후 스트레스장애와 급성스트레스 장애의 평가 및 치료)

  • Park, Ki-Chang
    • Korean Journal of Biological Psychiatry
    • /
    • v.2 no.2
    • /
    • pp.193-204
    • /
    • 1995
  • Traumatic brain injury(TBI) used to be developed after a severe traumatic event. Therefore TBI usually induces acute or chronic stress reaction. I reviewed the concept, epidemiology, biological or psychosocial etiology, diagnosis and treatment of post-traumatic stress disorder (PTSD), and discussed about PTSD or stress reaction after TBI. Early evaluation and management of stress reaction after TBI are important.

  • PDF

A study of injury mechanism and neural plasticity of traumatic brain injury (외상성 뇌손상의 손상 기전과 신경가소성에 대한 고찰)

  • Song Ju-min;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.2
    • /
    • pp.90-98
    • /
    • 2004
  • Traumatic brain injury is an insult to the brain caused by an external physical force, that may product a diminished or altered state of consciousness, which results in impairment of cognitive abilities or physical function. The purposes of this study were to overview injury mechanism and neural plasticity of traumatic brain injury. Injury mecanism includes exitotoxicity, production free radical, inflammation and apoptosis. Furthermore traumatic brain injury has protective mechanisms includes production of neural growth factor, heat shock protein, anti-inflammatory cytokines.

  • PDF

A Case of Traumatic Brain Injury in a Chihuahua Dog: Serial Clinical and Computed Tomographic Findings (치와와에서 발생한 외상적 뇌손상 증례; 연속적인 임상적 및 전산화 단층영상 소견)

  • Lee, Hee-Chun;Won, Jin-Hee;Moon, Jong-Hyun;Jung, Hae-Won;Jung, Dong-In
    • Journal of Veterinary Clinics
    • /
    • v.31 no.4
    • /
    • pp.329-332
    • /
    • 2014
  • A dog (Chihuahua, 2-year-old, intact female) was referred to us because of cluster seizure. She had history of falling from height few days before presentation. Brain computed tomography (CT) results demonstrated fracture line on right temporal bone and hypodense, edematous changes of the adjacent brain parenchyma on right cerebral parenchyma. Based on history, clinical signs, and diagnostic imaging findings, this patient was diagnosed to traumatic brain injury. After diagnosis, the patient was well controlled with anti-inflammatory drug and anti-epileptic drugs. When 30, 480, and 1260 days after initial brain CT examination, we performed serial brain CT rechecks. This case report describes serial clinical and brain CT findings after traumatic brain injury.

Post-Traumatic Cerebral Infarction Following Low-Energy Penetrating Craniocerebral Injury Caused by a Nail

  • Chen, Po-Chuan;Tsai, Shih-Hung;Chen, Yu-Long;Liao, Wen-I
    • Journal of Korean Neurosurgical Society
    • /
    • v.55 no.5
    • /
    • pp.293-295
    • /
    • 2014
  • Post-traumatic cerebral infarction (PTCI) is a secondary insult which causes global cerebral hypoxia or hypoperfusion after traumatic brain injury, and carries a remarkable high mortality rate. PTCI is usually caused by blunt brain injury with gross hematoma and/or brain herniation. Herein, we present the case of a 91-year-old male who had sustained PTCI following a low-energy penetrating craniocerebral injury due to a nail without evidence of hematoma. The patient survived after a decompressive craniectomy, but permanent neurological damage occurred. This is the first case of profound PTCI following a low-energy penetrating craniocerebral nail injury and reminds clinicians of possibility this rare dreadful complication for care of head-injured patients.

The use of Amantadine in Traumatic Brain Injury Patients (외상성 뇌손상환자에서 Amantadine의 사용)

  • Jung, Han Yong;Kim, Yang Rae
    • Korean Journal of Biological Psychiatry
    • /
    • v.7 no.1
    • /
    • pp.55-63
    • /
    • 2000
  • Avariety of symptoms can occur following traumatic brain injury(TBI) or other types of acquired brain injury. These symptoms can include problems with short-term memory, attention, planning, problem solving, impulsivity, disinhibition, poor motivation, and other behavioral and cognitive deficit. These symptoms may respond to certain drugs, such as dopaminergic agents. Amantadine may protect patients from secondary neuronal damage after brain injury as a effect of NMDA receptor antagonists and may improve functioning of brain-injured patients as a dopaminergic agonist. Clinically, based on current evidence, amantadine may provide a potentially effective, safe, and inexpensive option for treating the cognitive, mood, and behavioral disorders of individuals with brain injury. The rationales for using amantadine are discussed, and pertinent literatures are reviewed.

  • PDF

Comparisons of the Prognostic Predictors of Traumatic Brain Injury According to Admission Glasgow Coma Scale Scores Based on 1- and 6-month Assessments

  • Oh Hyun-Soo;Seo Wha-Sook;Lee Seul;Song Ho-Sook
    • Journal of Korean Academy of Nursing
    • /
    • v.36 no.4
    • /
    • pp.621-629
    • /
    • 2006
  • Purpose. The purpose of this study was to identify the clinical variables that predict functional and cognitive recovery at 1- and 6-month in both severe and moderate/mild traumatic brain injury patients. Methods. The subjects of this study were 82 traumatically brain-injured patients who were admitted to a Neurological Intensive Care Unit at a university hospital. Potential prognostic factors included were age, motor and pupillary response, systolic blood pressure, heart rate, and the presence of intracranial hematoma at admission. Results. The significant predictors of functional disability in severe traumatic brain injury subjects were, age, systolic blood pressure, the presence of intracranial hematoma, motor response, and heart rate at admission. In moderate/mild traumatic brain injury patients, motor response, abnormal pupil reflex, and heart rate at admission were identified as significant predictors of functional disability. On the other hand, the significant predictors of cognitive ability for severe traumatic brain injury patients were motor response and the presence of intracranial hematoma at admission, whereas those for moderate/mild patients were motor response, pupil reflex, systolic blood pressure at admission, and age. Conclusions. The results of the present study indicate that the significant predictors of TBI differ according to TBI severity on admission, outcome type, and outcome measurement time. This can be meaningful to critical care nurses for a better understanding on the prediction of brain injury patients. On the other hand, the model used in the present study appeared to produce relatively low explicabilities for functional and cognitive recovery although a direct comparison of our results with those of others is difficult due to differences in outcome definition and validation methods. This implies that other clinical variables should be added to the model used in the present study to increase its predicting power for determining functional and cognitive outcomes.

The Effect of Proprioceptive and Vestibular Sensory Input on Expression of BDNF after Traumatic Brain Injury in the Rat (고유감각과 전정감각 입력이 외상성 뇌손상 쥐의 BDNF 발현에 미치는 영향)

  • Song, Ju-Min
    • PNF and Movement
    • /
    • v.4 no.1
    • /
    • pp.51-62
    • /
    • 2006
  • Purpose : The purposes of this study were to test the effect of proprioceptive and vestibular sensory input on expression of BDNF after traumatic brain injury in the rat. Subject : The control group was sacrificed at 24 hours after traumatic brain injury. The experimental group I was housed in standard cage for 7 days. The experimental group II was housed in standard cage after intervention to proprioceptive and vestibular sensory(balance training) for 7 days. Method : Traumatic brain injury was induced by weight drop model and after operation they were housed in individual standard cages for 24 hours. After 7th day, rats were sacrificed and cryostat coronal sections were processed individual1y in goat polyclonal anti-BDNF antibody. The morphologic characteristics and the BDNF expression were investigated in injured hemisphere section and contralateral brain section from immunohistochemistry using light microscope. Result : The results of this experiment were as follows: 1. In control group, cell bodies in lateral nucleus of cerebellum, superior vestibular nucleus, purkinje cell layer of cerebellum and pontine nucleus changed morphologically. 2. The expression of BDNF in contralateral hemisphere of group II were revealed. 3. On 7th day after operation, immunohistochemical response of BDNF in lateral nucleus, superior vestibular nucleus, purkinje cell layer and pontine nucleus appeared in group II. Conclusion : The present results revealed that intervention to proprioceptive and vestibular sensory input is enhance expression of BDNF and it is useful in neuronal reorganization improvement after traumatic brain injury.

  • PDF