• Title/Summary/Keyword: Tree Growth

Search Result 245, Processing Time 0.055 seconds

Growth Response of Pinus densiflora to Hydrologic Conditions in the Central Korea (수문 요인에 대한 중부 지역 소나무의 생장 반응)

  • Kim, Je-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.1
    • /
    • pp.66-71
    • /
    • 1999
  • Main concern is to figure out the growth response of Pinus densiflora to hydrologic conditions in the central Korea. Continuous measurements were carried out with six trees with dendrometers in the Chungbuk National University experimental forest (Wolak-san) during 1995~1996. Surrounding hydrological conditions reflected by the solar radiation, air temperature, precipitation, soil water were included in measurements. Their effects on the biological response of trees was investigated and expressed as response functions. With these response functions, tree growth model was developed. Soil water availability was more related to the tree growth than air temperature. Limited number of biological measurements with dendrometer could permit determination of dynamics of radial tree growth to the hydrological conditions. Tree growth model could be used to check and revise the statistical transfer function of dendrohydrology.

  • PDF

Climate and Growth Relationship in Blue Pine (Pinus wallichiana) from the Western Himalaya, India (인도 서히말리아산 블루파인(Pinus wallichiana)의 연륜생장과 기후와의 관계)

  • Yadav, R. R.;Amalava, B.
    • The Korean Journal of Ecology
    • /
    • v.20 no.2
    • /
    • pp.95-102
    • /
    • 1997
  • Ring width chronologies of blue pine (pinus wallichiana) from two mesic sites, Kanasar(2, 400 m) and Gangotri(3, 000 m), in the western Himalayan region. India were developed to understand tree growth-climate relationship and its applicability in proxy climate studies. The resoponse function analyses of the two chronologies show that the site conditions play an important role in modulating the effect of climatic variables on tree growth. Winter temperature, prior to the growth year, has been found to play positive influence on blue pine growth at both sites. Summer temperature also has very similar response except for June and August. June temperature has negative influence at the lower in contrary to at the higher site. Low August temperature favors tree growth to precipitation has been found to vary which could be due to different precipitation regime at the two sites. Winter precipitation is important for tree growth at the higher, whereas summer at the lower sits. The present study suggests that the tree ring materials of blue pine from the temperate Himalayan regions could be used to develop chronologies for the reconstruction of seasonal climatic variables.

  • PDF

Tree Growth Model Design for Realistic Game Landscape Production (사실적인 게임 배경 제작을 위한 나무 성장 모델 설계)

  • Kim, Jin-Mo;Kim, Dae-Yeoul;Cho, Hyung-Je
    • Journal of Korea Game Society
    • /
    • v.13 no.2
    • /
    • pp.49-58
    • /
    • 2013
  • In this study, a tree growth model is designed to represent a variety of trees consisting of a outdoor terrain of game efficiently and naturally. The proposed tree growth model is an integrated tree growth model, and is configured using the following approaches: (1) the tree modeling method based on growth volume and the convolution sums of divisor functions, which is used to model a variety kind of trees more intuitively and naturally; (2) a rendering method using a level of detail of branch based on instancing for real-time processing of numerous trees with complicated structures; and (3) a combination of the above methods to efficiently implement a game landscape. The natural and diverse growths of trees that emerged using the proposed tree growth model is evaluated through experimentation, along with the possibility of implementing the natural game landscape and the efficiency of real-time processing.

Changes of Tree Growth and Fruit Quality of "Yumi" Peach under Long-Term Soil Water Deficit

  • Yun, Seok Kyu;Kim, Sung Jong;Nam, Eun Young;Kwon, Jung Hyun;Chung, Kyeong Ho;Choi, In Myung;Kim, Ghiseok;Shin, Hyunsuk
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.276-282
    • /
    • 2017
  • Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.

An Analysis of Tree Growth in the XLPE Interface (가교폴리에틸렌 계면에서의 트리성장 분석)

  • Kim, Cheol-Woon;Park, Hyun-Bin;Kim, Tae-Sung;Lee, Joon-Ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.2
    • /
    • pp.90-94
    • /
    • 1998
  • This study aims at analyzing to treeing in the solid-solid interface which is insulation type of cable junction parts, the proceeding of tree-growth and electrical breakdown were research in the study. Interface was made artificially to detect how it influenced the insulating ability of the whole system, the specimen were XLPE generally used in cable. The interface conditions were divided into two parts. First condition being the one focused on the surface of interface, it was treated with sand paper (#80, #600, #1200). For the second condition, the pressure of interface was varied as the value of 1, 5, 10 [$kg/cm^2$]. Using above conditions, treeing and breakdown properties on tree-growth were respectively compared in details. As a result, breakdown time was shorter for the full range of supplied voltage in the case of interface existed in the joint than non-existed interface. In the case of existed interface, the interface which had high-interface pressure and painted with silicon insulating oil was the best in the aspect of breakdown characteristics.

  • PDF

Tree Growth Management System using Hand-Held Type RFID based on CBD Methodolgy (컴포넌트 기반 방법론 및 핸드헬드형 RFID를 이용한 수목 생육 관리 시스템)

  • Jung, Se Hoon;Kwon, Young Wook;Sim, Chun Bo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.7 no.3
    • /
    • pp.43-53
    • /
    • 2011
  • The many cities are changing in the city form where the person and nature are mixed. Namely, the government invests many expense in tree field of distance space for the change in the green city. In this paper, we design and implement a tree growth management system using PDA built in 13.56MHz RFID reader and CBD(Component Based Development) for ubiquitous computing environments. Our system provides history management to increase business efficiency for location coordinate of tree and history information of tree which using RFID, the RFlD tag is attaching the new tree and that is inputting GPS location information in PDA and provides tree information of tree by location coordinate to history management. Finally, we show from a performance analysis that our system achieves about 85% average tree read rate of RFID under test scenario environments.

Measurement of Electrical Treeing Length and Area by Use of Image Processing (영상 처리 방법을 이용한 트리 길이와 열화면적 계측)

  • 백관현;김재환
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.8 no.1
    • /
    • pp.57-62
    • /
    • 1994
  • In this paper, a system for measuring of treeing degradation in organic dielectric material by using image processing technics, is discussed. Traditionally, treeing is measured by visual method. It made difficulty to understanding for features and changes in the configlEation of the tree growth. Using image processing system, it is made to describe the characters of the tree growth, specially length of tree and area of treeing degradation. From this image processing and visual measurement, the similar results were made, an automatic measurement system was made for configuration of the tree growth.

  • PDF

The Influence of Surface Modified Nano Alumina for Electrical Treeing in Epoxy Insulation (에폭시 절연의 전기적 트리잉에 관한 표면 개질된 나노알루미나의 영향)

  • Park, Jae-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1218-1224
    • /
    • 2016
  • This paper presents the results of a study on the effect of surface modified alumina nanocomposites on electrical tree growth in epoxy insulation. Treeing experiments were conducted at a fixde AC voltage (500kV/mm, 10kV/60Hz)on unfilled epoxy sample as well as epoxy nanocomposites of 4 types with different loading and surface modified GDE gram. Time for tree growth as well as tree propagation length were studied. The results show that there is a significant improvement tree propagation time compare unfilled epoxy to epoxy nano alumina composites. Different tree propagation shapes as well as slower tree growth with 4 types nano alumina composites were observed.

The Tree Growth and Breakdown Characteristics of Unsaturated Polyester Dissolving the Electronegative Gases (부성기체를 용해시킨 불포화 폴리에스터의 Tree 성장과 절연파괴 특성)

  • 이보호;전춘생
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.2
    • /
    • pp.178-184
    • /
    • 1992
  • This study treats the improvement of the dielectric strength of polymer by eliminating the air in it and dissolving electronegative gases. As experimental material, unsaturated polyester resin was used and the specimen was made by dissolving NS12T. SFS16T abd CCIS12TFS12T gases which have strong electron affinity. And also the electrical properties (tree growth and breakdown characteristics) of them were tested and discussed. The results are as follows. When the specimen dissolved with electronegative gas compared with one with air` 1) The tree breakdown voltage of the former is higher than that of the latter. 2) The tree growth of the former is slower than that of the latter. 3) The temperature dependence of the former is smaller than that of the latter. 4) The breakdown voltage of the specimen dissolved with electronegative gas is much higher than that dissolved with air.