• Title, Summary, Keyword: Tube Hydroforming

Search Result 147, Processing Time 0.039 seconds

Evaluation of Tube Hydroformability (Tube Hydroforming 공정의 성형성 평가)

  • 김영석;조흥수;박춘달;김영삼;조완제
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.604-614
    • /
    • 2000
  • In this paper, the mechanical characteristics and fundamental mechanism of a roll-formed tube during the hydroforming process are investigated in order to obtain the ewly localization of the tube hydroforming skills which are the core production techniques for the super light weight and high safety of the car body. Also, the theoretical influences of the material variables and the processes on the formability in the tube hydroforming are studied. In addition, the techniques to evaluate the forming limit of the bulging process of a tube are developed.

  • PDF

Hydroforming Characteristics of Double Layered Tube (이중튜브의 액압 성형특성 연구)

  • Kwon, S.O.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.567-574
    • /
    • 2007
  • Double layered tube is assembled with an inner tube and an outer tube, similar in material or not, contacting closely and deforming simultaneously when subjected to external force. For the manufacturing of double layered tube, the hydroforming assembly technology has several advantages. Therefore in this study, hydroforming characteristics of double layered tube was investigated. The free bulge test was performed to produce formability diagrams of double layered tubes at various forming pressure and feeding amounts. The hexagonal shape hydroforming test was also performed to estimate the dimensional accuracies of double layered tube through the corner filling ratio and the gap between inner and outer tube. Besides experimental analyses, the analytical model that can predict internal pressure for the hydroforming of double-layered tube was proposed and experimentally validated.

Tube Bending Analysis for Hydroforming Process (Tube Hydroforming을 이한 굽힘 공정해석)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.249-256
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its seberal advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. Tube hydroforming process is divided into prebending process and hydroforming process. Tube bending ins an important factor of the hydroforming process to enable the tube to be placed in the die cavity. This paper presents the theoretical analysis and the simulation results of the tube bending process. With some assumptions, approximate equations are derived to predict the thickness distribution on the cross section and the spring back of the bent tube. Bending simulations are carried out and compared to the analytical and experimental results.

  • PDF

Analysis and formability evaluation in tube and welded blank hydroforming of engine mount bracket (엔진마운트 브래킷의 튜브 및 용접판매 유압성형에 대한 성형해석과 성형성 비교)

  • 신용승
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.7-13
    • /
    • 1999
  • Hydroforming is the technology that utilizes hydraulic pressure to form sheet and tube metals in to desired shapes inside die cavities. It can be subdivided into tube hydroforming and sheet hydroforming according to the blanks used. In this paper the simulation of tube and welded blank hydroforming is carried out respectiyely. And simulation results are compared to evaluate formability in tube and welded blank hydroforming of engine mount bracket

  • PDF

Development of Formability Test for Tube, Hydroforming (하이드로포밍용 소재의 성형성 평가 연구)

  • 한수식;박기철
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.631-637
    • /
    • 2000
  • The tube hydroforming technology is new key production technologies, which contribute to a light-weight cu. Because the tubes are used for hydroforming instead of the sheet materials formability test for tube is required to measure the formability of materials for hydroforming. In this Paper, a kind of formability test for tube, which can well represent the characteristics of tube hydroforming processes, is developed. Developed formability test method can consider not oかy the influence of material Properties but also contact with die and material. Some investigation was carried out to verify the effectiveness of developed formability test.

  • PDF

A Study on Optimal Process Design of Hydroforming Process with n Genetic Algorithm and Neural Network (Genetic Algorithm과 Neural Network을 이용한 Tube Hydroforming의 성형공정 최적화에 대한 연구)

  • 양재봉;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.9 no.6
    • /
    • pp.644-652
    • /
    • 2000
  • Tube hydroforming is recently drawing attention of automotive industries due to its several advantages over conventional methods. It can produce wide range of products such as subframes, engine cradles, and exhaust manifolds with cheaper production cost by reducing overall number of processes. h successful tube hydroforming depends on the reasonable combination of the internal pressure and axial load at the tube ends. This paper deals with the optimal process design of hydroforming process using the genetic algorithm and neural network. An optimization technique is used in order to minimize the tube thickness variation by determining the optimal loading path in the tube expansion forming and the tube T-shape forming process.

  • PDF

Analysis on the Tube and Welded Blank Hydroforming of Automotive Engine Mount Bracket (자동차 엔진마운트 브래킷의 관재 및 용접판재 유압성형에 대한 성형해석)

  • 김헌영;신용승;홍춘기;전병희;오수익
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.3-14
    • /
    • 2001
  • Hydroforming is the technology using hydraulic pressure and forming sheet or tube metals to desired shape in a die cavity. lt can be characterized as tube hydroforming and sheet hydroforming depending on the shape of used blank. Due to its prcess-related benefits, this production technology has been remarkably noticed for great potential for feasible applications and recently gained great attraction from many industrials including automotive and non-automotive. This Paper analyzed the tube and the welded blank hydroforming process and compared formability of the processes for automotive engine mount bracket. The mathematical analysis was performed by using the dynamic explicit finite element code, PAM-STAMP. In tube hydroforming, bending, springback, and forming analysis were carried out and the effect of mandrel and axial feeding were examined. In welded blank hydroforming, pressure curve history is determined and the results of forming analysis were evaluated by the comparison of experimental results in the aspects of deformed shape and thickness distribution.

  • PDF

Finite Element Simulation of Axisymmeric Tube Hydroforming Processes (축대칭 튜브 하이드로포밍 공정의 유한요소 시뮬레이션)

  • 김용석;금영탁
    • Transactions of Materials Processing
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • Recently, the hydroforming process is widely applied to the automotive industry and rapidly spreaded to other industries. In this paper, An implicit finite element formulation for simulating axisymmetric tube hydroforming processes is performed. In order to describe normal anisotropy of the tube, Hill's non-quadratic yield function is employed. The frictional contact between die and tube and the frictionless contact between tube and fluid are considered using the mesh-normal vectors computed from the finite element mesh of the tube. The complete set of the governing relations comprising equilibrium and interfacial equations is linearized for Newton-Raphson procedure. In order to verify the validity of the developed finite element formulation, the axisymmetric tube bulge test is simulated and the simulation results are compared with experimental measurements. In a simulation of stepped circular tube hydroforming processes, an optimal hydraulic pressure curve is pursued by considering simultaneously internal pressures and axial forces.

Pre-Bending Analysis of Tie-Bar for Hydroforming (Hydroforming을 위한 Tie-bar의 예비굽힘성형 해석)

  • 강대철;전병희;성부용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • /
    • pp.255-261
    • /
    • 2000
  • Tube bending is one of the conventional manufacturing process. Recently, tube bending was highlighted in automotive industry by hydroforming. Tube hydroforming process is divided into pre-bending process and hydroforming process. It's initial state is very important in die cavity of first hydroforming process. So tube bending is important factor of the hydroforming process. In this paper, two pre-bending simulations, by a rotary draw bending machine and a bend die. This paper presents the simulation results in pre-bending process that is used to form an automotive part, tie-bar.

  • PDF

Tube Hydroforming Process of Automotive Subframe considering Preforming and Prebending Effect (예비굽힘 및 예비성형공정의 효과를 고려한 자동차 서브 프레임의 관재액압성형)

  • 김헌영;임희택;서창희;이우식
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • /
    • pp.402-408
    • /
    • 2003
  • Currently tube hydroforming has many studies and applications in manufacturing industry, especially in automotive industry. But tube hydroforming was applied to the automotive component with simple shape. So the manufacturer and the researcher proposed additional processes to form the automotive component with complex shape. It is prebending and preforming. Prebending is to crush bend or rotary draw bend a tubular blank into a shape that facilitates placement into the next forming tool. Preforming is where the prebent tube is crushed into a shape that facilitates placement into the final forming tool. This paper analyzed and compared to the tube hydroforming process to using of general and preformed bending tube, also explained the importance of tube bending and preforming process. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the tube hydroforming operations.

  • PDF