• Title, Summary, Keyword: Tumor

Search Result 13,534, Processing Time 0.07 seconds

Differential Response to Growth Regulator of Tobacco Crown Gall Tumor and Genetic Tumor (연초 Crown Gall Tumor 와 Genetic Tumor의 식물호르몬에 대한 분화반응)

  • 양덕춘;정재훈;민병훈;최광태;이정명
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • Morphological characteristic during formation of tobacco crown gall tumor and genetic tumor, and their differential response to growth regulator were investigated in in vitro culture. Crown gall tumor was induced from tumor tissue transformed by infecting Agrobacterium tumefaciens C58. Genetic tumor was induced from tumor tissue which was induced spontaneously from reciprocal interspecific hybrids between Nicotiana glauca (2n=24) and Nicotiana langsdorffii (2n=18). Morphological characteristic of crown gall tumor, genetic tumor, and teratoma shoot was very similar, and they were actively proliferated on hormone-free medium. Typical tumor callus and teratoma shoot formed from crown gall tumor on the hormone-free medium. On the contrary, tumor callus derived from genetic tumor formed as a crown gall tumor callus on the medium supplemented with 0.5 mg/L of 2,4-D, and lots of teratoma shoots without any root formed on the hormone-free medium. Root development from the teratoma shoots was hardly obtained on the medium with IAA, GA and active carbon. However, teratoma shoots with roots, as normal shoots, were initiated occasionally on the hormone-free medium. These shoots also formed new genetic tumor on the stem, which leaves formed lots of teratoma shoot on the hormone-free medium in in vitro culture.

  • PDF

Characteristics of the Growth of Ginseng Tumor Callus (인삼 Tumor Callus의 생장 특성)

  • 최광태;양덕춘
    • Journal of Ginseng Research
    • /
    • v.11 no.1
    • /
    • pp.56-65
    • /
    • 1987
  • Grown-gall tumor was induced from the infection of Panax ginseng C.A. Meyer by Agrobacterium tumefaciens C58 and the tumor calli were formed on the phytohormone free MS medium. The calli were friable and rough in appearance. Calli obtained from crown gall tumor were similar to and indistinguishable from each other. The tumor callus was quite different from normal callus. Tumor callus grew rapidly, whereas mal callus appeared late. The growth of tumor callus was better in the dark than in the light. In suspension culture, the fresh weight of tumor callus was twice as much in comparison with normal callus.

  • PDF

Protective Antitumor Activity through Dendritic Cell Immunization is Mediated by NK Cell as Well as CTL Activation

  • Kim, Kwang-Dong;Kim, Jin-Koo;Kim, Se-Jin;Choe, In-Seong;Chung, Tae-Hwa;Choe, Yong-Kyung;Lim, Jong-Seok
    • Archives of Pharmacal Research
    • /
    • v.22 no.4
    • /
    • pp.340-347
    • /
    • 1999
  • Dendritic cells (DCs) are potent professional antigen-presenting cells (APC) capable of inducing the primary T cell response to antigen. Although tumor cells express target antigens, they are incapable of stimulating a tumor-specific immune response due to a defect in the costimulatory signal that is required for optimal activation of T cells. In this work, we describe a new approach using tumor-DC coculture to improve the antigen presenting capacity of tumor cells which does not require a source of tumor-associated antigen. Immunization of a weakly immunogenic and progressive tumor cocultured with none marrow-derived DCs generated an effective tumor vaccine. Immunization with the cocutured DCs was able to induce complete protectiv immunity against tumor challenges and was effective for the induction of tumor-specific CTL (cytotoxic T lymphocyte) activity. Furthermore, high NK cell activity was observed in mice in which tumors were rejected. In addition, immunization with tumor-pulsed DC s induced delayed tumor growth, but not tumor eradication in tumor-bearing mice. Our results demonstrate that coculture of DCs with tumors generated antitumor immunity due to the NK cell activation as well as tumor-specific T cell. This approach would be used for designing tumor vaccines using DCs when the information about tumor antigens is limited.

  • PDF

Vascular Morphometric Changes During Tumor Growth and Chemotherapy in a Murine Mammary Tumor Model Using OCT Angiography: a Preliminary Study

  • Kim, Hoonsup;Eom, Tae Joong;Kim, Jae Gwan
    • Current Optics and Photonics
    • /
    • v.3 no.1
    • /
    • pp.54-65
    • /
    • 2019
  • To develop a biomarker predicting tumor treatment efficacy is helpful to reduce time, medical expenditure, and efforts in oncology therapy. In clinics, microvessel density using immunohistochemistry has been proposed as an indicator that correlates with both tumor size and metastasis of cancer. In the preclinical study, we hypothesized that vascular morphometrics using optical coherence tomography angiography (OCTA) could be potential indicators to estimate the treatment efficacy of breast cancer. To verify this hypothesis, a 13762-MAT-B-III rat breast tumor was grown in a dorsal skinfold window chamber which was applied to a nude mouse, and the change in vascular morphology was longitudinally monitored during tumor growth and metronomic cyclophosphamide treatment. Based on the daily OCTA maximum intensity projection map, multiple vessel parameters (vessel skeleton density, vessel diameter index, fractal dimension, and lacunarity) were compared with the tumor size in no tumor, treated tumor, and untreated tumor cases. Although each case has only one animal, we found that the vessel skeleton density (VSD), vessel diameter index and fractal dimension (FD) tended to be positively correlated with tumor size while lacunarity showed a partially negative correlation. Moreover, we observed that the changes in the VSD and FD are prior to the morphological change of the tumor. This feasibility study would be helpful in evaluating the tumor vascular response to treatment in preclinical settings.

Computational Analysis of Tumor Angiogenesis Patterns Using a Growing Brain Tumor Model

  • Shim, Eun-Bo;Kwon, Young-Keun;Ko, Hyung-Jong
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.1
    • /
    • pp.17-24
    • /
    • 2004
  • Tumor angiogenesis was simulated using a two-dimensional computational model. The equation that governed angiogenesis comprised a tumor angiogenesis factor (TAF) conservation equation in time and space, which was solved numerically using the Galerkin finite element method. The time derivative in the equation was approximated by a forward Euler scheme. A stochastic process model was used to simulate vessel formation and vessel elongation towards a paracrine site, i.e., tumor-secreted basic fibroblast growth factor (bFGF). In this study, we assumed a two-dimensional model that represented a thin (1.0 mm) slice of the tumor. The growth of the tumor over time was modeled according to the dynamic value of bFGF secreted within the tumor. The data used for the model were based on a previously reported model of a brain tumor in which four distinct stages (namely multicellular spherical, first detectable lesion, diagnosis, and death of the virtual patient) were modeled. In our study, computation was not continued beyond the 'diagnosis' time point to avoid the computational complexity of analyzing numerous vascular branches. The numerical solutions revealed that no bFGF remained within the region in which vessels developed, owing to the uptake of bFGF by endothelial cells. Consequently, a sharp, declining gradient of bFGF existed near the surface of the tumor. The vascular architecture developed numerous branches close to the tumor surface (the brush-border effect). Asymmetrical tumor growth was associated with a greater degree of branching at the tumor surface.

  • PDF

Inhibitory Effects of Dunning Rat Prostate Tumor Fluid on Proliferation of the Metastatic MAT-LyLu Cell Line

  • Bugan, Ilknur;Altun, Seyhan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.831-836
    • /
    • 2015
  • Tumor fluid accumulation occurs in both human cancer and experimental tumor models. Solid tumors show a tendency to tumor fluid accumulation because of their anatomical and physiological features and this may be influenced by molecular factors. Fluid accumulation in the peri-tumor area also occurs in the Dunning model of rat prostate cancer as the tumor grows. In this study, the effects of tumor fluids that were obtained from Dunning prostate tumor-bearing Copenhagen rats on the strongly metastatic MAT-LyLu cell line were investigatedby examining the cell's migration and tumor fluid's toxicity and the kinetic parameters such as cell proliferation, mitotic index, and labelling index. In this research, tumor fluids were obtained from rats injected with $2{\times}10^5$ MAT-LyLu cells and treated with saline solution, and 200 nM tetrodotoxin (TTX), highly specific sodium channel blocker was used. Sterilized tumor fluids were added to medium of MAT-LyLu cells with the proportion of 20% in vitro. Consequently, it was demonstrated that Dunning rat prostate tumor fluid significantly inhibited proliferation (up to 50%), mitotic index, and labeling index of MAT-LyLu cells (up to 75%) (p<0.05) but stimulated the motility of the cells in vitro.

COX-2 increase tumor-associated angiogenesis and tumor growth by eNOS-dependent pathway (eNOS 의존적 pathway를 통한 COX-2의 tumor 성장 증가와 tumor 혈관신생 증가)

  • Sohn, Eun-Hwa;Nam, Seung-Koong
    • Proceedings of the KAIS Fall Conference
    • /
    • /
    • pp.1068-1071
    • /
    • 2011
  • Cyclooxygenases (COX)-2 has been highly expressed in a variety of tumor cells and involved inflammatory process, tumor-associated angiogenesis, and vascular functions but the underlying mechanism is not clearly elucidated. We here investigated the molecular mechanism by which COX-2 regulates tumor-associated angiogenesis. In vivo, we injected B16-F1 cells overexpressed with COX-2 or mock in wild type or eNOS-deficient mice. Tumor cells overexpressed with COX-2 increase tumor-associated angiogenesis and tumor growth compared with control cells and that the effect of COX-2 was lower in eNOS-deficient mice than wild type mice. These results may contribute to further understanding of the regulation of angiogenesis by COX during tumor metastasis and inflammation.

  • PDF

Tumor-associated autoantibodies as diagnostic and prognostic biomarkers

  • Heo, Chang-Kyu;Bahk, Young Yil;Cho, Eun-Wie
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.677-685
    • /
    • 2012
  • In the process of tumorigenesis, normal cells are remodeled to cancer cells and protein expression patterns are changed to those of tumor cells. A newly formed tumor microenvironment elicits the immune system and, as a result, a humoral immune response takes place. Although the tumor antigens are undetectable in sera at the early stage of tumorigenesis, the nature of an antibody amplification response to antigens makes tumor-associated autoantibodies as promising early biomarkers in cancer diagnosis. Moreover, the recent development of proteomic techniques that make neo-epitopes of tumor-associated autoantigens discovered concomitantly has opened a new area of 'immuno-proteomics', which presents tumor-associated autoantibody signatures and confers information to redefine the process of tumorigenesis. In this article, the strategies recently used to identify and validate serum autoantibodies are outlined and tumor-associated antigens suggested until now as diagnostic/prognostic biomarkers in various tumor types are reviewed. Also, the meaning of autoantibody signatures and their clinical utility in personalized medicine are discussed.

Anti-tumor Immunity Induced by Tumor Cells Expressing a Membrane-bound Form of IL-2 and SDF-1

  • Choi, Jin-Wha;Lim, Ho-Yong;Chang, Mi-Ra;Cheon, Ji-Yeon;Kim, Young-Sang
    • Animal cells and systems
    • /
    • v.12 no.4
    • /
    • pp.193-201
    • /
    • 2008
  • The eventual goal of tumor immunotherapy is to develop a vaccine inducing a specific anti-tumor immunity. Cytokine gene therapy is an effective way at least in animal models, but limited efficacy and various side effects obstruct clinical applications. In this study, we developed a tumor vaccine expressing a membrane-bound form of IL-2(mbIL-2) and SDF-1 in B16F10 melanoma cells. The tumor clones expressing mbIL-2 showed reduced tumorigenicity, and additional expression of SDF-1 to mbIL-2 expressing tumor cells caused more severe reduction in tumorigenicity. However, expression of the SDF-1 alone did not affect on the tumorigenicity, probably because of limited production of SDF-1 in the SDF-1 transfected clones. When the mice once rejected mbIL-2/SDF-1 expressing tumor clone were re-challenged with wild type B16F10 tumor cells, all of the mice survived. This result suggests that mbIL-2/SDF-1 tumor clone is effective in inducing systemic anti-tumor immunity against wild type B16 melanoma. Furthermore, culture supernatant of tumor clones expressing SDF-1 induced lymphocyte migration in vitro. These results, all together, suggest that expression of mbIL-2 and SDF-1 in tumor cells enhances anti-tumor immune responses through different roles; the secreted SDF-1 may function as a chemoattractant to recruit immune cells to tumor vaccine injection site, and the mbIL-2 on tumor cells may provide costimulatory signal for CTL activation in physical contacts.