• Title, Summary, Keyword: Turing instability

Search Result 6, Processing Time 0.037 seconds

Turing, Turing Instability, Computational Biology and Combustion (Turing, Turing 불안정성 그리고 수리생물학과 연소)

  • Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.1
    • /
    • pp.46-56
    • /
    • 2003
  • The present paper is concerned with the development of the computational biology in the past half century and its relationship with combustion. The modem computational biology is considered to be initiated by the work of Alan Turing on the morphogenesis in 1952. This paper first touches the life and scientific achievement of Alan Turing and his theory on the morphogenesis based on the reactive-diffusive instability, called the Turing instability. The theory of Turing instability was later extended to the nonlinear realm of the reactive-diffusive systems, which is discussed in the framework of the excitable media by using the Oregonator model. Then, combustion analogies of the Turing instability and excitable media are discussed for the cellular instability, pattern forming combustion phenomena and flame edge. Finally, the recent efforts on numerical simulations of biological systems, employing the detailed bio-chemical knietic mechanism is discussed along with the possibility of applying the numerical combustion techniques to the computational cell biology.

  • PDF

INSTABILITY IN A PREDATOR-PREY MODEL WITH DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.21-29
    • /
    • 2009
  • This paper treats the conditions for the existence and stability properties of stationary solutions of a predator-prey interaction with self and cross-diffusion. We show that at a certain critical value a diffusion driven instability occurs, i.e. the stationary solution stays stable with respect to the kinetic system (the system without diffusion) but becomes unstable with respect to the system with diffusion and that Turing instability takes place. We note that the cross-diffusion increase or decrease a Turing space (the space which the emergence of spatial patterns is holding) compared to the Turing space with self-diffusion, i.e. the cross-diffusion response is an important factor that should not be ignored when pattern emerges.

  • PDF

DYNAMICS OF A MODIFIED HOLLING-TANNER PREDATOR-PREY MODEL WITH DIFFUSION

  • SAMBATH, M.;BALACHANDRAN, K.;JUNG, IL HYO
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.2
    • /
    • pp.139-155
    • /
    • 2019
  • In this paper, we study the asymptotic behavior and Hopf bifurcation of the modified Holling-Tanner models for the predator-prey interactions in the absence of diffusion. Further the direction of Hopf bifurcation and stability of bifurcating periodic solutions are investigated. Diffusion driven instability of the positive equilibrium solutions and Turing instability region regarding the parameters are established. Finally we illustrate the theoretical results with some numerical examples.

BIFURCATION ANALYSIS OF A SINGLE SPECIES REACTION-DIFFUSION MODEL WITH NONLOCAL DELAY

  • Zhou, Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.249-281
    • /
    • 2020
  • A reaction-diffusion model with spatiotemporal delay modeling the dynamical behavior of a single species is investigated. The parameter regions for the local stability, global stability and instability of the unique positive constant steady state solution are derived. The conditions of the occurrence of Turing (diffusion-driven) instability are obtained. The existence of time-periodic solutions, the existence and nonexistence of nonconstant positive steady state solutions are proved by bifurcation method and energy method. Numerical simulations are presented to verify and illustrate the theoretical results.

PATTERN FORMATION IN A GENERAL DEGN-HARRISON REACTION MODEL

  • Zhou, Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.655-666
    • /
    • 2017
  • In this paper, we study the pattern formation to a general Degn-Harrison reaction model. We show Turing instability happens by analyzing the stability of the unique positive equilibrium with respect to the PDE model and the corresponding ODE model, which indicate the existence of the non-constant steady state solutions. We also show the existence periodic solutions of the PDE model and the ODE model by using Hopf bifurcation theory. Numerical simulations are presented to verify and illustrate the theoretical results.

TURING INSTABILITY IN A PREDATOR-PREY MODEL IN PATCHY SPACE WITH SELF AND CROSS DIFFUSION

  • Aly, Shaban
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.2
    • /
    • pp.129-138
    • /
    • 2013
  • A spatio-temporal models as systems of ODE which describe two-species Beddington - DeAngelis type predator-prey system living in a habitat of two identical patches linked by migration is investigated. It is assumed in the model that the per capita migration rate of each species is influenced not only by its own but also by the other one's density, i.e. there is cross diffusion present. We show that a standard (self-diffusion) system may be either stable or unstable, a cross-diffusion response can stabilize an unstable standard system and destabilize a stable standard system. For the diffusively stable model, numerical studies show that at a critical value of the bifurcation parameter the system undergoes a Turing bifurcation and the cross migration response is an important factor that should not be ignored when pattern emerges.