• Title, Summary, Keyword: Two-dimensional finite element method (2D-FEM)

Search Result 45, Processing Time 0.04 seconds

Analysis of PSC Box Girder Anchorage Zone using FEM and 2D SUB-3D STM Approach (유한요소법 및 유사 3 차원 스트릿-타이 모델 방법을 이용한 PSC 박스거더 정착부의 해석)

  • Yun, Young-Mook;Kim, Seung-Eock;Oh, Jin-Woo;Park, Jung-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.2
    • /
    • pp.113-129
    • /
    • 2000
  • This study evaluates the behavior and strength of an anchorage zone of the prestressed concrete box girder bridge on the Kyungboo highway railroad using the 2D SUB-3D STM approach and a linear elastic finite element analysis. The 2D SUB-3D STM approach utilizes several two-dimensional sub strut-tie models that represent the compressive and tensile stress flows of each projected plane of the three-dimensional structural concrete in the selection of a three dimensional strut-tie model, evaluation of the effective strengths of the concrete struts, and verification of the geometric compatibility condition and bearing capacity of the critical nodal zones in the selected three-dimensional strut-tie model. The finite element analysis uses an 8-node brick element and the longitudinal prestressing force is considered as the equivalent nodal force. Analysis results show that the 2D SUB-3D STM approach and linear elastic finite element method can be effectively applied to the analysis and design of three-dimensional structural concrete including a prestressed concrete box girder anchorage zone.

  • PDF

Second-order wave radiation by multiple cylinders in time domain through the finite element method

  • Wang, C.Z.;Mitra, S.;Khoo, B.C.
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.317-336
    • /
    • 2011
  • A time domain finite element based method is employed to analyze wave radiation by multiple cylinders. The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order. The first- and second-order velocity potential problems at each time step are solved through a finite element method (FEM). The matrix equation of the FEM is solved through an iteration and the initial solution is obtained from the result at the previous time step. The three-dimensional (3D) mesh required is generated based on a two-dimensional (2D) hybrid mesh on a horizontal plane and its extension in the vertical direction. The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary, respectively. The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method. Results for various configurations including two-cylinder and four-cylinder cases are provided to show the mutual influence due to cylinders on the first and second waves and forces.

A Study on the Iron Losses in Flux-Switching Permanent Magnet Machines

  • Shin, Heung-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.699-703
    • /
    • 2018
  • Flux-switching permanent magnet machines (FSPMM) have doubly-salient and simple structures making it cost effective and suitable for mass production. In addition, it is possible to increase the rotor rotating speed and concentrate the flux of the permanent magnet on the air-gap. Due to these merits, the FSPMM can be applied to the various industry applications. To improve the performance, various design variables need to be studied in terms of design techniques. In this paper, we especially concentrate on the distribution of iron losses using a two-dimensional finite-element method (2D FEM). As a result, we can get an information for high efficiency FSPMM design.

Two dimensional variable-length vector storage format for efficient storage of sparse matrix in the finite element method (유한요소법에서 희소행렬의 효율적인 저장을 위한 2차원 가변길이 벡터 저장구조)

  • Boo, Hee-Hyung;Kim, Sung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.9
    • /
    • pp.9-16
    • /
    • 2012
  • In this paper, we propose the two dimensional variable-length vector storage format which can be used for efficient storage of sparse matrix in the FEM (finite element method). The proposed storage format is the method storing only actual needed non-zero values of each row on upper triangular matrix with the total rows N, by using two dimensional variable-length vector instead of $N{\times}N$ large sparse matrix of entire equation of finite elements. This method only needs storage spaces of the number of minimum 1 to maximum 5 in 2D grid structure and the number of minimum 1 to maximum 14 in 3D grid structure of analysis target. The number doesn't excess two times although involving index number. From the experimental result, we can find out that the proposed storage format can reduce the memory space more effectively, as the total number of nodes increases, than the existing skyline storage format storing maximum column height.

Parametric Studies of Slope stability Analysis by 3D FEM Using Strength Reduction Method (강도감소법에 의한 3차원 사면안정해석에 대한 매개변수 연구)

  • Kim, Young-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.25-32
    • /
    • 2016
  • The two-dimensional (2D) analysis is widely used in geotechnical engineering for slope stability analysis assuming a plane-strain condition. It is implicitly assumed that the slip surface is infinitely wide, and thus three-dimensional (3D) end effects are negligible because of the infinite width of the slide mass. The majority of work on this subject suggests that the 2D factor of safety is conservative (i.e. lower than the 'true' 3D factor of safety). Recently, the 3D finite element method (FEM) became more attractive due to the progress of computational tools including the computer hardware and software. This paper presents the numerical analyses on rotational mode and translational mode slopes using the 2D and 3D FEM as well as 2D limit equilibrium methods (LEM). The results of the parametric study on the slope stability due to mesh size, dilatency angle, boundary conditions, stress history and model dimensions change are analysed. The analysis showed that the factor of safety in 3D analysis is always higher than that in the 2D analysis and the discrepancy of the slope width in W direction on the factor of safety is ignored if the roller type of W direction conditions is applied.

FEM analysis of Quartz oscillator considering dimensions of electrode (전극형상을 고려한 수정진동자 해석 기법 연구)

  • 박승배;김종정;이덕훈;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • /
    • pp.543-546
    • /
    • 2001
  • So far, the design methods of quartz crystal resonator have been developed. Recently, as the electronic package and semiconductor modules become smaller, the need to minimize the sizes of crystal components grows larger. but Minimizing crystal plate sizes has limitations because its temperature-frequency characteristics is worse and unwanted resonances occur. so appropriate design of electrode size and crystal plates is necessary. In this palter, Two-dimensional governing equations for electroded piezoelectric crystal plates with general symmetry have been solved from deduced equations from three-dimensional equations of linear piezoelectricity in most cases. In practice, electroded piezoelectric crystal plates have three-dimensional geometry, so simplified 2-dimensional equations and 2-D modeling are insufficient for explaining its resonance modes and characteristics. So, three-dimensional FEM(finite element method) analysis is done and its effectiveness is verified from analyzing practical crystal resonator model.

  • PDF

Characteristics Analysis of Radially Magnetized Tubular type Magnetic Coupling (반경 방향으로 자화된 Tubular 타입 자기 커플링의 특성 해석)

  • Kim, Chang-Woo;Jung, Kyoung-Hun;Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1551-1557
    • /
    • 2015
  • Magnetic coupling is used where required high reliability. because magnetic coupling's durability is stronger than mechanical coupling's durability. This paper shows the characteristics of radially magnetized tubular type magnetic coupling by using Analytical method such as space harmonic method. Analytical method was used, to find force characteristics. First, on the basis of the magnetic vector potential and two-dimensional(2-D) polar-coordinate system, the magnetic field solutions of the radially magnetized permanent magnet are obtained. And we obtain the analytical solutions for the flux density produced by permanent magnet. Finally, we can calculate the force by using the Maxwell stress tensor. And then, Finite element method(FEM) is used to validate force characteristics.

Extended-FEM for the solid-fluid mixture two-scale problems with BCC and FCC microstructures

  • Sawada, Tomohiro;Nakasumi, Shogo;Tezuka, Akira;Fukushima, Manabu;Yoshizawa, Yu-Ichi
    • Interaction and multiscale mechanics
    • /
    • v.2 no.1
    • /
    • pp.45-68
    • /
    • 2009
  • An aim of the study is to develop an efficient numerical simulation technique that can handle the two-scale analysis of fluid permeation filters fabricated by the partial sintering technique of small spherical ceramics. A solid-fluid mixture homogenization method is introduced to predict the mechanical characters such as rigidity and permeability of the porous ceramic filters from the micro-scale geometry and configuration of partially-sintered particles. An extended finite element (X-FE) discretization technique based on the enriched interpolations of respective characteristic functions at fluid-solid interfaces is proposed for the non-interface-fitted mesh solution of the micro-scale analysis that needs non-slip condition at the interface between solid and fluid phases of the unit cell. The homogenization and localization performances of the proposed method are shown in a typical two-dimensional benchmark problem whose model has a hole in center. Three-dimensional applications to the body-centered cubic (BCC) and face-centered cubic (FCC) unit cell models are also shown in the paper. The 3D application is prepared toward the computer-aided optimal design of ceramic filters. The accuracy and stability of the X-FEM based method are comparable to those of the standard interface-fitted FEM, and are superior to those of the voxel type FEM that is often used in such complex micro geometry cases.

Application of graded harmonic FE in the analysis of 2D-FGM axisymmetric structures

  • Karakas, Ali I.;Daloglu, Ayse T.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.3
    • /
    • pp.473-494
    • /
    • 2015
  • A graded harmonic finite element formulation based on three-dimensional elasticity theory is developed for the structural analysis of 2D functionally graded axisymmetric structures. The mechanical properties of the axisymmetric solid structures composed of two different metals and ceramics are assumed to vary in radial and axial directions according to power law variations as a function of the volume fractions of the constituents. The material properties of the graded element are calculated at the integration points. Effects of material distribution profile on the static deformation, natural frequency and dynamic response analyses of particular axisymmetric solid structures are investigated by changing the power law exponents. It is observed that the displacements, stresses and natural frequencies are severely affected by the variation of axial and radial power law exponents. Good accuracy is obtained with fewer elements in the present study since Fourier series expansion eliminates the need of finite element mesh in circumferential direction and continuous material property distribution within the elements improves accuracy without refining the mesh size in axial and radial directions.

A Study on Improvement of 100 Tons Toggle Injection Molding Machine's Weight Using Numerical Analysis (수치해석을 이용한 토글식 100톤 사출성형기의 중량 개선에 관한 연구)

  • Han, Seong-Ryeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4713-4718
    • /
    • 2013
  • Nowadays, three-dimensional computer added design(3D CAD) tool are widely and actively used for design of mechanical machine. Because using the tool is more effective to understand design concept and to collaborate with other operation than using two-dimensional design tool. In this study, the 3D CAD tool which is called I-DEAS was applied for three-dimensional modeling of main parts and assembling of modeled parts for identification the entire shape of a injection molding machine. In addition, a study was also performed regarding reduction for the weight of main plates for saving production cost and energy in the machine. A finite element method(FEM) program in I-DEAS tool was used for the improvement study. First, the current main plates were structural analysed and then the plate deformations, weak regions and stress distributions were graped. By the FEM results, the 2nd improved designing of the plates was conducted such as reinforcement or slimming of the plate wall thickness. The 2nd structural FEM was performed for verification of the redesigned plates and then the FEM results were compared with the 1st FEM's result. The weight of the main plates were averagely reduced approximately 3 - 7%. By these results, it was seemed that the improved plates have a useful availability.