• Title, Summary, Keyword: UV oxidation

Search Result 486, Processing Time 0.049 seconds

Influences of Environmental Conditions and Refractory Organic Matters on Organic Carbon Oxidation Rates Measured by a High Temperature Combustion and a UV-sulfate Methods (다양한 환경요인과 난분해성 유기물에 따른 고온산화 및 UV산화방식 총 유기탄소 산화율 변화)

  • Jung, Heon-Jae;Lee, Bo-Mi;Lee, Keun-Heon;Shin, Hyun-Sang;Hur, Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.98-107
    • /
    • 2016
  • This study examined the effects of environmental conditions and the presence of refractory organic matter on oxidation rates of total organic carbon (TOC) measurements based on high temperature combustion and ultraviolet-sulfate methods. Spectroscopic indices for prediction of oxidation rates were also explored using the UV spectra and fluorescence excitation-emission matrix (EEM) of humic acids. Furthermore, optimum TOC instrument conditions were suggested by comparing oxidation rates of a standard TOC material under various conditions. Environmental conditions included salts, reduced ions, and suspended solids. Salts had the greatest influence on oxidation rates in the UV-sulfate method. However, no effect was detected in the high temperature combustion method. The UV-sulfate method showed lower humic substance oxidation rates, refractory natural organic matter, compared to the other methods. TOC oxidation rates for the UV-sulfate method were negatively correlated with higher specific-UV absorbance, humification index, and humic-like EEM peak intensities, suggesting that these spectroscopic indices could be used to predict TOC oxidation rates. TOC signals from instruments using the UV-sulfate method increased with increasing chamber temperature and increasing UV exposure durations. Signals were more sensitive to the former condition, suggesting that chamber temperature is important for improving the TOC oxidation rates of refractory organic matter.

Removal of Tetracycline Antibiotics Using UV and UV/H2O2 Systems in Water (UV 및 UV/H2O2 시스템을 이용한 수중의 Tetracycline계 항생물질 제거)

  • Son, Hee-Jong;Yoom, Hoon-Sik;Jang, Seong-Ho;Kim, Han-Soo;Hong, Soon-Heon;Park, Woo-Sik;Song, Young-Chae
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1359-1366
    • /
    • 2014
  • Seven tetracycline classes of antibiotics were treated using ultraviolet (UV) and $UV/H_2O_2$ oxidation. Two different UV lamps were used for the UV and $UV/H_2O_2$ oxidation. The performance of the UV oxidation was different depending on the lamp type. The medium pressure lamp showed better performance than the low pressure lamp. Combining the low pressure lamp with hydrogen peroxide ($H_2O_2$) improved the removal performance substantially. The by-products formation of tetracycline by UV and $UV/H_2O_2$ were investigated. The protonated form ($[1+H]^+$) of tetracycline was m/z 445, reacted to yield almost exclusively two oxidation by-products by UV and $UV/H_2O_2$ oxidation. Their protonated forms of by-products were m/z 461 and m/z 477. The structures of tetracycline's by-products in UV and $UV/H_2O_2$ system were similar.

A Comparative Study on Degradation of BTEX Vapor by O3/UV, TiO2/UV, and O3/TiO2/UV System with Operating Conditions (운전조건에 따른 O3/UV, TiO2/UV 및 O3/TiO2/UV 시스템의 BTEX 증기처리에 관한 비교 연구)

  • Kim, Kyoung-Jin;Park, Ok-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.1
    • /
    • pp.91-99
    • /
    • 2008
  • A multilayer tower-type photoreactor, in which $TiO_2$-coated glass-tubes were installed, was used to measure the vapor-phase BTEX removal efficiencies by ozone oxidation ($O_3$/UV), photocatalytic oxidation ($TiO_2$/UV) and the combination of ozone and photocatalytic oxidation ($O_3/TiO_2$/UV) process, respectively. The experiments were conducted under various relative humidities, temperatures, ozone concentrations, gas flow rates and BTEX concentrations. As a result, the BTEX removal efficiency and the oxidation rate by $O_3/TiO_2$/UV system were highest, compared to $O_3$/UV and $TiO_2$/UV system. The $O_3/TiO_2$/UV system accelerated the low oxidation rate of low-concentration organic compounds and removed organic compounds to a large extent in a fixed volume of reactor in a short time. Therefore, $O_3/TiO_2$/UV system as a superimposed oxidation technology was developed to efficiently and economically treat refractory VOCs. Also, this study demonstrated feasibility of a technology to scale up a photoreactor from lab-scale to pilot-scale, which uses (i) a separated light-source chamber and a light distribution system, (ii) catalyst fixing to glass-tube media, and (iii) unit connection in series and/or parallel. The experimental results from $O_3/TiO_2$/UV system showed that (i) the highest BTEX removal efficiencies were obtained under relative humidity ranging from 50 to 55% and temperature ranging from 40 to $50^{\circ}C$, and (ii) the removal efficiencies linearly increased with ozone dosage and decreased with gas flow rate. When applying Langmuir-Hinshelwood model to $TiO_2$/UV and $O_3/TiO_2$/UV system, reaction rate constant for $O_3/TiO_2$/UV system was larger than that for $TiO_2$/UV system, however, it was found that adsorption constant for $O_3/TiO_2$/UV system was smaller than that for $TiO_2$/UV system due to competitive adsorption between organics and ozone.

Treatment of Wastewater Containing Ethanolamine from Coolant of the Secondary System of Nuclear Power Plant by UV/GAC Adsorption Oxidation Method (UV/GAC 흡착산화 공법을 이용한 원자력 발전소 2차 계통 냉각수로부터 발생하는 에탄올 아민 함유 폐수처리)

  • Choi, Min Jun;Kim, Hansoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.3
    • /
    • pp.318-325
    • /
    • 2017
  • Wastewater including ethanolamine used in the second generation of nuclear power plants is filtered out in the ion exchange resin of the condensate polishing plant. In the regeneration process of ion exchange resin, a strong acidic wastewater containing ethanolamine and a lager amount of ionic substances are released. In this study, the process involving UV oxidation part with or without absorbents was developed for treating wastewater released from the ionic exchange resin. The effect of adsorbents on the wastewater treatment was investigated by using UV oxidation system developed by us. As a result, the COD removal efficiency of UV/GAC process with the granular activated carbon (GAC) as an adsorbent was 71.3% at pH 12.8. The removal efficiency was 21.8% higher than that of the wastewater treated using UV oxidation process without any adsorbents at the same condition. The removal of T-N was 88.6% at pH 12.8 when using UV oxidation with the GAC absorbent, which was 18.0% higher than that of using the UV oxidation process without any absorbents. It is thought that ethanolamine adsorbed on the absorbent improved the efficiency of UV oxidation process. Therefore, the UV/GAC adsorption oxidation process can be more effective in treating wastewater containing ethanolamine than that of using the process without any absorbents.

UV/H2O2 Advanced Oxidation of Photo Processing Chemicals in a UV-free Reflecting Reactor (사진현상폐수의 UV-자유반사 반응조에서의 UV/H2O2 고급산화처리)

  • Choi, Kyung-Ae;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.2
    • /
    • pp.241-249
    • /
    • 2000
  • In this study, UV-catalyzed $H_2O_2$ oxidation and $H_2O_2$ oxidation to remove contaminants from photo processing chemicals were investigated at various conditions. Photo processing chemicals contains high concentrations of organic compounds and has very low biodegradability. Hydrogen peroxide is subjected to gradual decomposition as metastable substance. In the process, short-lived and highly reactive hydroxyl radicals are formed. The decomposition can be significantly accelerated by use of appropriate catalyst, such as ultraviolet radiation. The experiments were conducted in a UV-free reflecting reactor in batch and a high-pressure mercury lamp was used as UV source. Mixing, cooling and ventilation of the reactor were operated during experiments. In $UV/H_2O_2$ oxidation and $H_2O_2$ oxidation, the removal efficiencies of $COD_{Cr}$, TOC and chromaticity increased with the increase of $H_2O_2$ dosage and were higher in the controlled pH condition of 3 than in original pH condition of 8. In $UV/H_2O_2$ oxidation under the optimum condition of pH 8 and 1.3 stoichiometric $H_2O_2$ dosage, the removal efficiencies of $COD_{Cr}$, TOC and chromaticity were 47.5%, 75.0% and 91.5% respectively and $BOD/COD_{Cr}$ ratio was significantly increased from 0.04 to 0.21.

  • PDF

Characterization of the UV Oxidation of Raw Natural Rubber Thin Film Using Image and FT-IR Analysis

  • Kim, Ik-Sik;Lee, Bok-Won;Sohn, Kyung-Suk;Yoon, Joohoe;Lee, Jung-Hun
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Characterization of the UV oxidation for raw natural rubber (NR) was investigated in controlled conditions through image and FT-IR analysis. The UV oxidation was performed on a thin film of natural rubber coated on a KBr window at 254 nm and room temperature to exclude the thermal oxidation. Before or after exposure to UV light, image of the NR thin film was observed at a right or tilted angle. FT-IR absorption spectra were measured in transmission mode with the UV irradiation time. The UV oxidation of NR was examined by the changes of absorption peaks at 3425, 1717, 1084, 1477, 1377, and $833cm^{-1}$ which were assigned to hydroxyl group (-OH), carbonyl group (-C=O), carbon-oxygen bond (-C-O), methylene group $(-CH_2-)$, methyl group $(-CH_3)$, and cis-methine group $(cis-CCH_3=CH-)$, respectively. During the initial exposure period, the results indicated that the appearance of carbonyl group was directly related to the reduction of cis-methine group containing carbon-carbon double bond (-C=C-). Most of aldehydes or ketones from carbon-carbon double bonds were formed very fast by chain scission. A lot of long wide cracks with one orientation at regular intervals which resulted in consecutive chain scission were observed by image analysis. During all exposure periods, on the other hand, it was considered that the continuous increment of hydroxyl and carbonyl group was closely related to the decrement of methylene and methyl group in the allylic position. Therefore, two possible mechanisms for the UV oxidation of NR were suggested.

Comparative Studies Of the $UV/H_2O_2,\;UV/TiO_2/H_2O_2$ and Photo-Fenton Oxidation for Degradation of Citric Acid ($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton 산화방법에 의한 Citric Acid의 분해효율 비교)

  • Seo, Min-Hye;Cho, Soon-Haing;Ha, Dong-Yun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.429-437
    • /
    • 2006
  • To establish the efficient treatment technology of chemical cleaning wastewater from power plant, several AOPs($UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation) were investigated. Treatment efficiencies and the electrical energy requirements based on the EE/O parameter(the electrical energy, required per order of pollutant removal in $1m^3$ wastewater) were evaluated. TOC removal efficiencies of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation at the optimum conditions were 95.5%, 92.3%, 91.5%, respectively. The electrical energy requirements of $UV/H_2O_2,\;UV/TiO_2/H_2O_2$, Photo-Fenton oxidation were $11.26kWh/m^3,\;3.85kWh/m^3,\;0.799kWh/m^3$, respectively. From these results, it could be concluded that all of the three oxidation processes were effective for the degradation of citric acid. Considering the treatment efficiency and economical aspect, photo-Fenton oxidation was the most efficient treatment process among the three processes tested.

Monitoring Oxidation Behavior of [C70]Fullerene by Ultrasonic Spectroscopy ([C70]풀러렌 산화 반응의 거동에 관한 초음파 분광학적 고찰)

  • Ko, Weon Bae
    • Elastomers and Composites
    • /
    • v.49 no.2
    • /
    • pp.155-159
    • /
    • 2014
  • High resolution ultrasonic spectroscopy was used to observe the oxidation of [$C_{70}$]fullerene with 3-chloroperoxy benzoic acid in 1,2-dichlorobenzene. UV-vis spectroscopy and X-ray diffraction confirmed the resulting roducts of [$C_{70}$]fullerene oxidation.

KINETICS OF ATRAZINE OXIDATION BY UV RADIATION AND OXALATE ASSISTED H2O2/UV PROCESSES

  • Choi, Hyun-Jin;Choi, Jong-Duck;Kim, Hyun-Kab;Lee, Tae-Jin
    • Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • The degradation of atrazine was explored using UV alone, $H_2O_2/UV$, oxalate/UV and oxalate-assisted $H_2O_2/UV$. The addition of oxalate to the $H_2O_2/UV$ (oxalate-assisted $H_2O_2/UV$) process was the most effective method for the degradation of atrazine. The overall kinetic rate constant was split into the direct oxidation due to photolysis and that by the radicals from hydrogen peroxide or oxalate. In semi-empirical terms, the initial concentration of hydrogen peroxide had a greater contribution than that of oxalate for atrazine oxidation.

Characterization of Humic Acid in the Chemical Oxidation Technology(I) - Characteristics by Photocatalytic Oxidation Process - (화학적 산화법에 의한 부식산의 분해 처리기술에 관한 연구(I) - 광산화공정을 통한 부식산의 분해특성 분석 -)

  • Kim, Jong Boo;Rhee, Dong Seok
    • Analytical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.234-240
    • /
    • 2000
  • The efficiency of Photocatalytic Oxidation Process were investigated for the treatment of Aquatic Humic Substances (AHS). In UV-only system, pH 7-9 was the optimum pH range for TOC removal, and alkali range was the optimum pH for absorbance decrease. In UV/$TiO_2$ system, the optimum $TiO_2$ dosage was 50ppm and over 50ppm of $TiO_2$ dosage was not effective for removal of AHS. In UV/$H_2O_2$ system, optimum $H_2O_2$ dosage was 20mM, when over 20mM dosage, removal of TOC (Total Organic Carbon) and absorbance was decreased. Radical scavenger affected on the photo-oxidation of AHS. Removal rate of TOC and absorbance was decreased by addition of carbonate ions and TOC removal was more effected than that of absorbance.

  • PDF