• Title, Summary, Keyword: Underlying field arithmetic operation

Search Result 3, Processing Time 0.023 seconds

A Hardware Implementation of the Underlying Field Arithmetic Processor based on Optimized Unit Operation Components for Elliptic Curve Cryptosystems (타원곡선을 암호시스템에 사용되는 최적단위 연산항을 기반으로 한 기저체 연산기의 하드웨어 구현)

  • Jo, Seong-Je;Kwon, Yong-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2002
  • In recent years, the security of hardware and software systems is one of the most essential factor of our safe network community. As elliptic Curve Cryptosystems proposed by N. Koblitz and V. Miller independently in 1985, require fewer bits for the same security as the existing cryptosystems, for example RSA, there is a net reduction in cost size, and time. In this thesis, we propose an efficient hardware architecture of underlying field arithmetic processor for Elliptic Curve Cryptosystems, and a very useful method for implementing the architecture, especially multiplicative inverse operator over GF$GF (2^m)$ onto FPGA and futhermore VLSI, where the method is based on optimized unit operation components. We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed and inversion speed has been improved 150 times, 480 times respectively compared with the thesis presented by Sarwono Sutikno et al. [7]. The designed underlying arithmetic processor can be also applied for implementing other crypto-processor and various finite field applications.

Hyperelliptic Curve Crypto-Coprocessor over Affine and Projective Coordinates

  • Kim, Ho-Won;Wollinger, Thomas;Choi, Doo-Ho;Han, Dong-Guk;Lee, Mun-Kyu
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.365-376
    • /
    • 2008
  • This paper presents the design and implementation of a hyperelliptic curve cryptography (HECC) coprocessor over affine and projective coordinates, along with measurements of its performance, hardware complexity, and power consumption. We applied several design techniques, including parallelism, pipelining, and loop unrolling, in designing field arithmetic units, group operation units, and scalar multiplication units to improve the performance and power consumption. Our affine and projective coordinate-based HECC processors execute in 0.436 ms and 0.531 ms, respectively, based on the underlying field GF($2^{89}$). These results are about five times faster than those for previous hardware implementations and at least 13 times better in terms of area-time products. Further results suggest that neither case is superior to the other when considering the hardware complexity and performance. The characteristics of our proposed HECC coprocessor show that it is applicable to high-speed network applications as well as resource-constrained environments, such as PDAs, smart cards, and so on.

  • PDF

A Fast Inversion for Low-Complexity System over GF(2 $^{m}$) (경량화 시스템에 적합한 유한체 $GF(2^m)$에서의 고속 역원기)

  • Kim, So-Sun;Chang, Nam-Su;Kim, Chang-Han
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9
    • /
    • pp.51-60
    • /
    • 2005
  • The design of efficient cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. Especially, among the basic arithmetic over finite field, the rnultiplicative inversion is the most time consuming operation. In this paper, a fast inversion algerian in finite field $GF(2^m)$ with the standard basis representation is proposed. It is based on the Extended binary gcd algorithm (EBGA). The proposed algorithm executes about $18.8\%\;or\;45.9\%$ less iterations than EBGA or Montgomery inverse algorithm (MIA), respectively. In practical applications where the dimension of the field is large or may vary, systolic array sDucture becomes area-complexity and time-complexity costly or even impractical in previous algorithms. It is not suitable for low-weight and low-power systems, i.e., smartcard, the mobile phone. In this paper, we propose a new hardware architecture to apply an area-efficient and a synchronized inverter on low-complexity systems. It requires the number of addition and reduction operation less than previous architectures for computing the inverses in $GF(2^m)$ furthermore, the proposed inversion is applied over either prime or binary extension fields, more specially $GF(2^m)$ and GF(P) .