• Title, Summary, Keyword: VSI control chart

Search Result 31, Processing Time 0.025 seconds

Development of VSI Synthetic Control Chart (가변샘플링기법을 이용한 합성관리도의 개발)

  • Song, Suh-Ill;Park, Hyun-Kyu
    • Journal of the Korean Society for Quality Management
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper develops a new VSI $\={X}-CRL$ synthetic control chart that considers convenience of use in the field, and perception of change of process applying VSI techniques to synthetic control chart, simultaneously. We found the optimal sampling interval and various control limit factor of the suggested chart using markov chain. Comparison and analysis is carried out between synthetic VSI $\={X}-CRL$ chart and other chart in the statistical aspect; $\={X}$ control chart, VSI $\={X}$ chart, another synthetic chart. In case that the process follows normal distribution, the proposed VSI $\={X}-CRL$ synthetic control chart in detecting process mean shift showed the best performance in aspect of statistical performance, regardless of control limit L of CRL/S control chart.

Economic design of VSI ${\overline{X}}$-CRL Synthetic Control Chart (VSI ${\overline{X}}$-CRL 합성관리도의 경제적 설계)

  • Song, Suh-Ill;Park, Hyun-Kyu;Jung, Hey-Jin
    • Journal of the Society of Korea Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.85-93
    • /
    • 2005
  • This paper is designed a VSI ${\overline{X}}$-CRL synthetic control chart in aspect of economy. We found the optimal sampling interval and various control limit factors under various cost parameters using cost function, proposed Lorenzen and Vance. Optimal design parameters include the sample size, control limit width, sampling interval, CRL/S chart control limit; L. Comparison and analysis of cost parameters are applied between synthetic VSI ${\overline{X}}$-CRL chart and FSI ${\overline{X}}$-CRL chart. The result of this paper shows that VSI ${\overline{X}}$-CRL chart brings cost-cutting effect of 3.04% control expense less than FSI control chart. It may not be difficult to establish the optimal economic control parameters to apply the practical cost parameters in the field.

An Adaptive Moving Average (A-MA) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 적응형 이동평균 (A-MA) 관리도)

  • Lim, Tae-Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.4
    • /
    • pp.457-468
    • /
    • 2007
  • This paper proposes an adaptive moving average (A-MA) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI A-MA chart is to adjust sampling intervals as well as to accumulate previous samples selectively in order to increase the sensitivity. The VSI A-MA chart employs a threshold limit to determine whether or not to increase sampling rate as well as to accumulate previous samples. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI A-MA chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The control length L is introduced to prevent small mean shifts from being undetected for a long period. A Markov chain model is employed to investigate the VSI A-MA sampling process. Formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI A-MA chart is proposed. Comparative studies show that the proposed VSI A-MA chart is uniformly superior to the adaptive Cumulative sum (CUSUM) chart and to the Exponentially Weighted Moving Average (EWMA) chart, and is comparable to the variable sampling size (VSS) VSI EWMA chart with respect to the ATS performance.

Variable Sampling Interval $\bar{X}$ Control Chart Using Weighted Standard Deviation Method (가중표준편차를 이용한 가변표본채취간격 $\bar{X}$ 관리도)

  • Chang, Youngsoon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2014
  • This article proposes a variable sampling interval (VSI) $\bar{X}$ control chart using weighted standard deviation (WSD) method for skewed populations. The WSD method decomposes the standard deviation of a quality characteristic into upper and lower deviations and adjusts control limits and warning limits of a control chart in accordance with the direction and degree of skewness. A control chart constant is derived for estimating the standard deviation of skewed distributions with the mean of sample standard deviations. The proposed chart is compared with the conventional VSI $\bar{X}$ control chart under some skewed distributions. Simulation study shows that the proposed WSD VSI chart can control the in-control average time to signal (ATS) as an adequate level better than the conventional VSI chart, and the proposed chart can detect a decrease in the process mean of a quality characteristic following a positively skewed distribution more quickly than the standard VSI chart.

Comparison of two sampling intervals and three sampling intervals VSI charts for monitoring both means and variances

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.997-1006
    • /
    • 2015
  • In industrial quality control, when engineers use VSI control procedure they should consider both required time to signal and switching behaviors together in the case of production process changed. Up to the present, many researchers have studied fixed sampling interval (FSI) chart and variable sampling interval (VSI) chart in the points of average number of samples to signal (ANSS) and average time to signal (ATS). However, ANSS and ATS do not provide any switching information between different sampling intervals of VSI schemes. In this study, performances of two sampling intervals VSI chart and three sampling intervals VSI chart are evaluated and compared. The numerical results show that ANSS and ATS values of two sampling intervals VSI chart and three sampling interval VSI chart are similar regardless the amount of shifts. However, the values of switching behaviors including ANSW are less efficient in three sampling intervals VSI charts than in two sampling intervals VSI chart.

A Selectively Cumulative Sum (S-CUSUM) Control Chart with Variable Sampling Intervals (VSI) (가변 샘플링 간격(VSI)을 갖는 선택적 누적합 (S-CUSUM) 관리도)

  • Im, Tae-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • /
    • pp.560-570
    • /
    • 2006
  • This paper proposes a selectively cumulative sum (S-CUSUM) control chart with variable sampling intervals (VSI) for detecting shifts in the process mean. The basic idea of the VSI S-CUSUM chart is to adjust sampling intervals and to accumulate previous samples selectively in order to increase the sensitivity. The VSI S-CUSUM chart employs a threshold limit to determine whether to increase sampling rate as well as to accumulate previous samples or not. If a standardized control statistic falls outside the threshold limit, the next sample is taken with higher sampling rate and is accumulated to calculate the next control statistic. If the control statistic falls within the threshold limit, the next sample is taken with lower sampling rate and only the sample is used to get the control statistic. The VSI S-CUSUM chart produces an 'out-of-control' signal either when any control statistic falls outside the control limit or when L-consecutive control statistics fall outside the threshold limit. The number L is a decision variable and is called a 'control length'. A Markov chain model is employed to describe the VSI S-CUSUM sampling process. Some useful formulae related to the steady state average time-to signal (ATS) for an in-control state and out-of-control state are derived in closed forms. A statistical design procedure for the VSI S-CUSUM chart is proposed. Comparative studies show that the proposed VSI S-CUSUM chart is uniformly superior to the VSI CUSUM chart or to the Exponentially Weighted Moving Average (EWMA) chart with respect to the ATS performance.

  • PDF

Economic-Statistical Design of VSI Run Rules Charts (VSI 런-규칙 관리도의 경제적-통계적 설계)

  • Kang, Bun-Kyu;Lim, Tae-Jin
    • Journal of the Korean Society for Quality Management
    • /
    • v.38 no.2
    • /
    • pp.190-201
    • /
    • 2010
  • This research proposes a method for designing VSI (Variable Sampling Interval) control charts with supplementary run rules. The basic idea is to apply various run rules and the VSI scheme to a control chart in order to increase the sensitivity. The sampling process of the VSI run rules chart is constructed by Markov chain approach. A procedure for designing the VSI run rules chart is proposed based on Lorenzen and Vance's model. Sensitivity study shows that the VSI run rules charts outperform the FSI (Fixed Sampling Interval) run rules charts for wide range of process mean shifts. A major advantage of the VSI run rules chart over other charts such as CUSUM, EWMA, and adaptive charts is it's simplicity in implementation. Some useful guidelines are proposed based on the sensitivity study.

Switching performances of multivarite VSI chart for simultaneous monitoring correlation coefficients of related quality variables

  • Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.451-459
    • /
    • 2017
  • There are many researches showing that when a process change has occurred, variable sampling intervals (VSI) control chart is better than the fixed sampling interval (FSI) control chart in terms of reducing the required time to signal. When the process engineers use VSI control procedure, frequent switching between different sampling intervals can be a complicating factor. However, average number of samples to signal (ANSS), which is the amount of required samples to signal, and average time to signal (ATS) do not provide any control statistics about switching performances of VSI charts. In this study, we evaluate numerical switching performances of multivariate VSI EWMA chart including average number of switches to signal (ANSW) and average switching rate (ASWR). In addition, numerical study has been carried out to examine how to improve the performance of considered chart with accumulate-combine approach under several different smoothing constant and sample size. In conclusion, process engineers, who want to manage the correlation coefficients of related quality variables, are recommended to make sample size as large and smoothing constant as small as possible under permission of process conditions.

An Economic Design of the EWMA Control Charts with Variable Sampling Interval (VSI EWIMA 관리도의 경제적 설계)

  • 송서일;정혜진
    • Journal of the Korean Society for Quality Management
    • /
    • v.30 no.4
    • /
    • pp.1-14
    • /
    • 2002
  • Traditional SPC techniques are looking out variation of process by fixed sampling interval and fixed sample size about every hour, the process of in-control or out-of-control couldn't be detected actually when the sample points are plotted near control limits, and it takes no notice of expense concerned with such sample points. In this paper, to overcome that, consider VSI(variable sampling interval) EWMA control charts which VSI method is applied. The VSI control charts use a short sampling internal if previous sample points are plotted near control limits, then the process has high probability of out-of-control. But it uses a long sampling interval if they are plotted near centerline of the control chart, since process has high possibility of in-control. And then a comparison and analysis between FSI(fixed sampling interval) and VSI EWMA in the statistical aspect and economic aspect is studied. Finally, we show that VSI EWMA control chart is more efficient than FSI EWMA control chart in the both aspects.

A VSR $\bar{X}$ Chart with Multi-state VSS and 2-state VSI Scheme

  • Lee, Jae-Heon;Park, Chang-Soon
    • Journal of the Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.252-264
    • /
    • 2004
  • Variable sampling Interval (VSI) control charts vary the sampling interval according to value of the control statistic while the sample size is fixed. It is known that control charts with 2-state VSI scheme, which uses only two sampling intervals, give good statistical properties. Variable sample size (VSS) control charts vary the sample size according to value of the control statistic while the sampling interval is fixed. In the VSS scheme no optimal results are known for the number of sample sizes. It is also known that the variable sampling rate (VSR) $\bar{X}$ control chart with 2-state VSS and 2-state VSI scheme leads to large improvements In performance over the fixed sampling rate (FSR) $\bar{X}$ chart, but the optimal number of states for sample size Is not known. In this paper, the VSR Χ charts with multi-state VSS and 2-state VSI scheme are designed and compared to 2-state VSS and 2-state VSI scheme. The multi-state VSS scheme is considered to, achieve an additional improvement by switching from the 2-state VSS scheme. On the other hand, the multi-state VSI scheme is not considered because the 2-state scheme is known to be optimal. The 3-state VSS scheme improves substantially the sensitivity of the $\bar{X}$ chart especially for small and moderate mean shifts.