• Title, Summary, Keyword: Waste incineration

Search Result 328, Processing Time 0.035 seconds

A Study on Improvement Measures of Energy Recovery Efficiency through Analysis of Operational Status of Municipal Solid Waste Incineration Facilities (생활폐기물 소각시설의 운영 실태 분석을 통한 에너지회수 효율 개선방안 검토)

  • Park, Sang-Jin;Phae, Chae-gun
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.762-769
    • /
    • 2018
  • This study was carried out to examine the improvement plan by analyzing the characteristics of imported wastes, operation rate, and benefits of energy recovery for incineration facilities with a treatment capacity greater than 50 ton/day. The incineration facility capacity increased by 3,280 tons over 15 years, and the actual incineration rate increased to 2,783 ton/day. The operation rate dropped to 76% in 2010 and then rose again to 81% in 2016. The actual calorific value compared to the design calorific value increased by 33.8% from 94.6% in 2002 to 128.4% in 2016. The recovery efficiency decreased by 29% over 16 years from 110.7% to 81.7% in 2002. Recovery and sales of thermal energy from the incinerator (capacity 200 ton/day) dominated the operation cost, and operating income was generated by energy sales (such as power generation and steam). The treatment capacity increased by 11% to 18% after the recalculation of the incineration capacity and has remained consistently above 90% in most facilities to date. In order to solve the problem of high calorific value waste, wastewater, leachate, and clean water should be mixed and incinerated, and heat recovery should be performed through a water-cooled grate and water cooling wall installation. Twenty-five of the 38 incineration facilities (about 70%) are due for a major repair. After the main repair of the facility, the operation rate is expected to increase and the operating cost is expected to decline due to energy recovery. Inspection and repair should be carried out in a timely manner to increase incineration and heat energy recovery efficiencies.

Problem and Optimum Operational Strategy of Multipurpose Reservoir in Korea (우리나라 다목적 Dam 운영의 문제점과 개선방안)

  • 심순보
    • Journal of the Korean Professional Engineers Association
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 1986
  • The number of visiters to Bukhan Mt. national park, generation quantity of solid waste and collection system were researched to consider a counterplan for the pollution control of the national park and study for developing the effective treatment of solid waste was tried through the proximate analysis of each component containing. Results obtained in this study were summerized as follows; The great part of visitors go on an excursion to the Bukhan Mt. national park during July and August and also, the solid waste was generated nearly a half of the total amount at the same period. The major collection facilities in the national park were waste basket and incineration box. But the incineration box was too large in volume and very far in distance, and its collection period was irregular, so it was cause to the congestion of solid waste and bad smell and dirty. Therefore, to complete collection of solid waste, we must set up the waste basket which able to find within 40~50m from the origination place of solid waste and induce the visitors to throw the solid waste. It was obtained as moisture content: 48.5 wt%, volatile solid: 28.4wt%, fixed solid: 23.1 wt%, lower heating value: 1,320kca1/kg from experimental analysis of solid waste. According to this analysis, the incineration operation is possible, but the generation quantity of solid waste was too small to construct incineration plant for heat recovery. It was found that it is suitable for the aerobic composting by mixing with the night soil which generate in the national park after the recovery of resources such as metals, glasses and plastics.

  • PDF

Estimation of Energy Recovery Rate of Municipal Waste Incineration Facilities through Measuring Instruments (계측기기 측정을 통한 생활폐기물 소각시설의 에너지 회수효율 산정 연구)

  • Kwon, Young-Hyun;Kang, Jun-Gu;Ko, Young-Jae;Yoo, Ha-Nyoung;Kwon, Jun-Hwa;Park, Ho-Yeun;Jeon, Tae-Wan;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.770-776
    • /
    • 2018
  • This study measured the energy recovery rate of each municipal waste incineration facility according to the revised energy recovery rate estimation method, which targeted four municipal waste incineration facilities (Unit No. 7). The results calculated by the measuring instruments were used for each factor to estimate the recovery rate, and the available potential of available energy was examined by analyzing the energy production and valid consumption. As a result of the low heating value, 2,540 kcal/kg was calculated on average when the LHVw formula was applied, which is approximately 116 kcal/kg higher than the average design standard of 2,424 kcal/kg. The energy recovery rate was calculated as 96.9% on average based on production and 67.5% based on effective consumption, and the analysis shows that approximately 29.4% energy can be used.

Utilization of Heat from Waste-Incineration Facility for Heating Large-Scale Horticultural Facilities (소각시설 여열을 이용한 대규모 시설원예 단지의 난방 시스템 적용 가능성 평가)

  • Lee, Jaeho;Hyun, Intak;Lee, Kwang Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.418-425
    • /
    • 2015
  • The Korean government plans to establish large-scale horticultural facilities using reclaimed land to improve the competitiveness of the national agricultural sector at the government level. One of the most significant corresponding problems is the ongoing dependence of these facilities on fossil fuel, whereby constant heating is necessary during the winter season to provide the necessary breeding conditions for greenhouse crops. In particular, high-level energy consumption is incurred from the use of heating-related coverings with large heat-transmission coefficients such as those composed of vinyl and glass. This study investigated the potential applicability of waste-incineration heat for use in large-scale horticultural facilities by evaluating the hot-water temperature, heat loss, and available greenhouse area as functions of the distance between the incineration facility and the greenhouse. In conclusion, waste-incineration heat from a HDPE pipe can heat a horticultural facility of 10 ha if the distance is less than 8 km.

On the Alternative Incineration Technologies for the Treatment of Hazardous Waste (유해폐기물 처리용 소각 대체기술 동향)

  • Yang, Hee-Chul;Cho, Yung-Zun;Eun, Hee-Chul;Kim, Eung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.319-327
    • /
    • 2007
  • Incineration has been regarded as the best developed technology available for organically hazardous waste. However, permitting and siting incinerators to treat hazardous waste such as a waste containing PCBs is very difficult due to the public concerns associated with toxic air emissions. Recently, a lot of alternatives to an incineration have been developed and these technologies have the potential of alleviating public concerns by decreasing emissions of hazardous materials such as dioxins and furans. This paper reviews currently available alternative incineration technologies for various hazardous waste streams. Various categories of non-thermal and thermal alternative incineration technologies have been evaluated in terms of their process operating condition, applicability of a waste stream and their emission of secondary waste. Detailed descriptions of operating principles of several technologies are also provided.

A Study of Assessment Method for Site Feasibility of Municipal Solid Waste Incineration (생활폐기물소각장의 입지타당성 평가기법)

  • Lee, Mu-Choon
    • Journal of Environmental Impact Assessment
    • /
    • v.6 no.2
    • /
    • pp.123-135
    • /
    • 1997
  • The solid waste incineration facilities which cause environmental pollution. And those are some kind of loathing facilities for residents who do not want it. This problem could be solved by location feasibility study. The purpose of location feasibility study was to determine one site out of three candidate sites. This study which was done by the law, environmental and economic factor was considered for optimum site selection. Comparative evaluation among the candidate sites was done by ordinal scale and thus the optimum site was selected.

  • PDF

Development of Metal Recovery Process for Municipal Incineration Bottom Ash (MIBA)

  • Kuroki, Ryota;Ohya, Hitoshi;Ishida, Kazumasa;Yamazaki, Kenichi
    • Journal of the Korean Institute of Resources Recycling
    • /
    • v.28 no.3
    • /
    • pp.21-25
    • /
    • 2019
  • The utilization of incineration ash from municipal waste must be promoted to solve the social problem on the shortage of final disposal site. In this research, metals should be recovered to avoid the damage of the crushing machine during the utilization of incineration ash in cement industry. In fact, incineration bottom ash from municipal waste contains iron in 3-5%. Nonferrous metal and stainless steel in 1% is also included. The research and development on the physical recovery process was performed not only to remove the metals but also to recover high grade products. Metals were separated from incineration ash in Maruya Co. Ltd.. In fact, iron scrap recovered by magnetic separation can be selled. After that, mixed metal was separated from incineration ash using screen. In this research, mixed metal tried to divided copper, aluminum, brass and stainless steel using drum type magnetic separation, eddy current separation and high magnetic separation. As a result, recovered iron had an 80% for the grade. Aluminum was recovered by eddy current separation without copper and brass.

A Study on the Effectiveness of Continuous CO2 Emission Monitoring in a Waste Incinerator (폐기물 소각시설의 이산화탄소 (CO2) 연속측정 실효성에 관한 연구)

  • Oh, Seung Hwan;Kang, Lim Suk;Jung, Dong Hee
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.273-281
    • /
    • 2018
  • The purpose of this study is to consider the effectiveness of continuous $CO_2$ emission monitoring in waste incinerator. To prevent global warming, many countries are trying to reduce $CO_2$, the main greenhouse gas. Currently, Korea is implementing an emission trading scheme to reduce $CO_2$, and waste incinerators are included in this scheme as major $CO_2$ sources. However, when using waste incinerators, $CO_2$ is discharged during incineration of various types of wastes, therefore it is very difficult to calculate the amount of emissions according to IPCC guidelines. In addition, the estimation of $CO_2$ emissions by calculation is known to lack of accuracy comparing with actual emissions. Currently, Korea is operating CleanSYS, which enables continuous measurement of gases emitted into the atmosphere. Therefore, it is possible to estimate the $CO_2$ emissions of waste incineration facilities. The IPCC, which published $CO_2$ emission calculation guidelines, recognizes that direct measurement of emission is a more advanced method in cases of various $CO_2$ emission sources such as a waste incineration facility. Also, Korean emission trading scheme guidelines allow estimation of $CO_2$ emissions by continuous measurement at waste incineration facilities. Therefore, this study considers the effectiveness of a direct measurement method by comparing the results of CleanSYS with the calculation method suggested by the IPCC guidelines.

Analysis of Citizen's Attitude to the Incineration (소각장에 대한 시민의식 조사분석)

  • Kim, Joong-Kee;Park, Chang-Hee;Chung, Jae-Chun;Lee, Sung-Taik;Heo, Seok
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 1996
  • A questionary survey was performed to invetigate the citizen's attitude concerning the waste incineration facility. People disliked most cremetorim followed by waste transfer station, chmical factory, waste incineration facility and sanitary landfill. Most people favored 1km minimum distance of incineration facilities from the residence. Most people think that we need most composting facilities in the future followed by sanitary landfill and incineration facilities. Majority of people was willing to accept the perfect incineration facilities near their residence. However, 37.6% answered no. Most people accepted complusory measures by the goverment in the location of incineration facilites. One incineration facility per one city or Gun was slightly favored than multy-city or Gun incineration facility. People think that perfect thchnology most important to overcome Nimby's.

  • PDF

A Study of Estimation of Greenhouse Gas Emission and Reduction by Municipal Solid Waste (MSW) Management (D시 생활폐기물 관리 방법과 온실가스 배출량과 감축량 산정 연구)

  • Yun, Hyunmyeong;Chang, Yun;Jang, Yong-Chul
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.606-615
    • /
    • 2018
  • Over the past two decades, the options for solid waste management have been changing from land disposal to recycling, waste-to-energy, and incineration due to growing attention for resource and energy recovery. In addition, the reduction of greenhouse gas (GHG) emission has become an issue of concern in the waste sector because such gases often released into the atmosphere during the waste management processes (e.g., biodegradation in landfills and combustion by incineration) can contribute to climate change. In this study, the emission and reduction rates of GHGs by the municipal solid waste (MSW) management options in D city have been studied for the years 1996-2016. The emissions and reduction rates were calculated according to the Intergovernmental Panel on Climate Change guidelines and the EU Prognos method, respectively. A dramatic decrease in the waste landfilled was observed between 1996 and 2004, after which its amount has been relatively constant. Waste recycling and incineration have been increased over the decades, leading to a peak in the GHG emissions from landfills of approximately $63,323tCO_2\;eq/yr$ in 2005, while the lowest value of $35,962tCO_2\;eq/yr$ was observed in 2016. In 2016, the estimated emission rate of GHGs from incineration was $59,199tCO_2\;eq/yr$. The reduction rate by material recycling was the highest ($-164,487tCO_2\;eq/yr$) in 2016, followed by the rates by heat recovery with incineration ($-59,242tCO_2\;eq/yr$) and landfill gas recovery ($-23,922tCO_2\;eq/yr$). Moreover, the cumulative GHG reduction rate between 1996 and 2016 was $-3.46MtCO_2\;eq$, implying a very positive impact on future $CO_2$ reduction achieved by waste recycling as well as heat recovery of incineration and landfill gas recovery. This study clearly demonstrates that improved MSW management systems are positive for GHGs reduction and energy savings. These results could help the waste management decision-makers supporting the MSW recycling and energy recovery policies as well as the climate change mitigation efforts at local government level.