• Title, Summary, Keyword: Wheel/Rail combination

Search Result 12, Processing Time 0.05 seconds

A Study on Dynamic Characteristics of the Rolling-stock for the Combination of Domestic Wheel/Rail Profiles (국내 철도 차륜/레일형상 조합에 따른 차량 동특성 분석 연구)

  • Hur Hyun-Moo;Seo Jung-Won;Kwon Seok-Jin;Kim Nam-Po
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.5
    • /
    • pp.483-489
    • /
    • 2005
  • Railway wheel/rail contact conditions have influences on dynamic behavior of the rolling stock. If there are incompatibility problems between the wheel and rail, damages like wheel wear, wheel spalling, rail wear, etc are occurred. Especially wheel and rail profiles are important factors of vehicle curving performance, so compatibility studies between wheel and rail profiles have to be carried out preferentially. In this study, we have studied the compatibility between wheel and rail profiles of KNR conventional line to analyze the dynamic performances of the rolling-stock. Thus we showed the results relating to wheel/rail geometric contact, vehicle running performances as the change of wheel/rail combination.

Compatibility Analysis of Wheel/Rail Profile on Conventional Railway (기존철도 차륜/레일형상의 적합성 분석)

  • Hur, Hyun-Moo;Seo, Jung-Won;Chung, Heung-Chai;Goo, Dong-Hoe
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.934-939
    • /
    • 2004
  • Railway wheel/rail contact conditions have an influence on dynamic behavior of rolling stock. If there are problems of incompatibility between wheel and rail, damages like wheel wear, wheel spalling, rail wear, etc are occurred. Especially wheel and rail profiles are important factor of vehicle curving performance, so compatibility study between wheel and rail has to be carried out preferentially, In this study, we have analyzed the compatibility between wheel and rail of KNR conventional line to improve the maintenance efficiency of wheel and rail. Thus we showed the results relating to wheel/rail geometric contact, vehicle running performances as the change of wheel/rail combination.

  • PDF

Prediction of Rolling Noise of Korean Train Express Using FEM and BEM (FEM과 BEM을 이용한 한국형 고속전철의 전동소음 예측)

  • 김관주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.555-564
    • /
    • 2001
  • Wheel-rail noise is normally classified into three catagories : rolling, squeal and impact noise. In this paper, rolling noise caused by the irregularity between a wheel and rail is analysed as follows: The irregularity between the wheel and rail is assumed as combination of sinusoidal profiles. Wheel-rail contact stiffness is linearized by using Hertzian contact theory, and then contact force between the wheel and rail is calculated. Vibration of the rail and wheel is calculated theoretically by receptance method or FEM depending on the geometry of wheel or rail for the frequency range of 100-5000Hz, important for noise generation. The radiation caused by those vibration is computed by BEM. To verify this analysis tools, rolling noise is calculated by preceding analysis steps using typical roughness data and it is compared with experimental rolling noise data. This analysis tools show reasonable results and used for the prediction of KTX rolling noise.

  • PDF

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • 한형석;이은호;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.58-65
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail geometric contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

Development of a Wheel/Rail Geometric Contact Simulation Program (차륜/레일 기하학적 접촉 시뮬레이션 프로그램 개발)

  • Han Hyung-Suk;Lee En-Ho;Kim Jae-Chul
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.645-650
    • /
    • 2003
  • Wheel/Rail geometric constraint relationships, such as effective conicity and gravitational stiffness, strongly influence the lateral dynamics of railway vehicles. In general, these geometric contact characteristics are nonlinear functions of the wheelset lateral displacement. There is a need to develop a wheel/rail contact simulation program for wheels and rails with arbitrary profiles for the prediction of the dynamic behavior of railway vehicles. An algorithm to simulate any combination of wheels and rails is employed and a GUI for easy analysis is constructed. The simulation program is applied to KTX which will run on both KTX and conventional rails, two rail standards having different rail profiles. The results show that the two rail systems have different geometric contact characteristic

  • PDF

Effects of Wheel Profile on KTX Dynamic Characteristics (차륜답면 형상변화에 따른 KTX의 동특성)

  • 장종기;이승일;최연선
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.3
    • /
    • pp.259-263
    • /
    • 2004
  • The running safety of a railway vehicle depends on the design parameters and contact condition between wheel and rail. In this study, the effect of the conicity of wheel tread is analyzed using ADAMS/RAIL software on running situation. Modal analysis shows in 0.6 Hz natural frequency of lateral mode in fully arranged the KTX cars. The excessive vibration of the tail cars occurs in the 17th car as the speed and the stiffness of the secondary suspension increases, and especially for 1/40 conicity of the GV40 wheel. Also, the analysis shows that combination of wheel profile, GV40 for power cars and XP55 for passenger cars can reduce the lateral vibration of the tail cars.

Dynamic analysis of eddy current brake system for design evaluation (와전류 제동장치 설계검증을 위한 동역학적 해석)

  • Chung, Kyung-Ryul;T. Benker
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • /
    • pp.318.1-318
    • /
    • 2002
  • In this paper, the results of an analysis of the dynamic behavior of the eddy current brake(ECB) system are presented. The measured irregularity of the track in Korean high speed line and the track irregularity given by ERRI(high level) were used for simulation. The wheel-rail profile combination were analyzed with different rail gauges. A model of the bogie with an substitute body fur the carbody was implemented in the Multi-Body-Simulation Program Simpack. (omitted)

  • PDF

Running Stability Analysis on the Tail Car of KTX (KTX 후미 차량의 주행 안정성 해석)

  • Lee Seung-Il;Choi Yeon-Sun
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.350-355
    • /
    • 2005
  • The running stability and safety of a railway vehicle depends on the design characteristics and the contact condition between wheel and rail. In this paper, numerical simulations using ANSYS and ADAMS were done on the basis of the experimental observations. The results show that 0.6 Hz of the tail car motion is due to the natural mode of car combination of the KTX. The effects of the conicity of wheel and the lateral stiffness of the secondary suspension on the running stability were analyzed numerically using ADAMS/RAIL. The results also show 0.6 Hz as like the experimental observations. And the adoption of the wheel of GV40(${\lambda}=0.025$) brought the sway motion at the tail cars, but XP55(${\lambda}=0.055$) did not when the secondary lateral stiffness of the KTX was greater than 0.3 MN/m.

  • PDF

Study on wheel profile for railway vehicle with narrow gauge by profile contact analysis (휠-레일 접촉 해석을 통한 협궤용 전동차 차륜 답면 분석)

  • Yang Hun-Suk;Lee Won-Sang;Nam Hak-Gi
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.146-151
    • /
    • 2005
  • Main parameters of wheel-rail combination are investigated by profile analysis. A rolling radius difference is one of the main characteristics that describe a contact between wheelset and railway track, which in turn defines the dynamic behavior of a wheelset. This paper describes functional relation between lateral wheelset displacement and rolling radius difference or conicity on new/worn wheel of existing narrow gauge vehicle. Information about curving behavior and running stability are given by this both relations. The optimal wheel profile for railway vehicle with narrow gauge is adopted through this analysis. And, the applicable limit value of conicity which is used in order to do dynamic simulation of vehicle is presented.

  • PDF

A study on solution of bogie wheel slip problem (도시철도차량 차륜슬립 문제 해결에 관한 연구)

  • Jo, Dong-Sik;Jeong, Sang-Beom;Cho, Sung-Won;Son, Young-Jin
    • Proceedings of the KSR Conference
    • /
    • /
    • pp.954-957
    • /
    • 2010
  • Line 2 is being operated in 10 cities and it composed the amount of rolling stock combination. Line 2 rails have more curved than straight rails. So, wheels and rails were damaged. Accidents or delays caused many social problems. so it is important that wheel and rail are efficiently managed. Here, find out the cause of wheel-slip characteristics and workarounds were studying. Chapter 1 Background and Purpose. Chapter 2 about wheel slip problem and seek way improving adhesiveness. Chapter 3 Conclusion.

  • PDF