• Title, Summary, Keyword: Word2Vec

Search Result 111, Processing Time 0.067 seconds

The Sentence Similarity Measure Using Deep-Learning and Char2Vec (딥러닝과 Char2Vec을 이용한 문장 유사도 판별)

  • Lim, Geun-Young;Cho, Young-Bok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1300-1306
    • /
    • 2018
  • The purpose of this study is to see possibility of Char2Vec as alternative of Word2Vec that most famous word embedding model in Sentence Similarity Measure Problem by Deep-Learning. In experiment, we used the Siamese Ma-LSTM recurrent neural network architecture for measure similarity two random sentences. Siamese Ma-LSTM model was implemented with tensorflow. We train each model with 200 epoch on gpu environment and it took about 20 hours. Then we compared Word2Vec based model training result with Char2Vec based model training result. as a result, model of based with Char2Vec that initialized random weight record 75.1% validation dataset accuracy and model of based with Word2Vec that pretrained with 3 million words and phrase record 71.6% validation dataset accuracy. so Char2Vec is suitable alternate of Word2Vec to optimize high system memory requirements problem.

A Study on Categorization of Korean News Article based on CNN using Doc2Vec (Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구)

  • Kim, Do-Woo;Koo, Myoung-Wan
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

A Study on Categorization of Korean News Article based on CNN using Doc2Vec (Doc2Vec을 활용한 CNN기반 한국어 신문기사 분류에 관한 연구)

  • Kim, Do-Woo;Koo, Myoung-Wan
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.67-71
    • /
    • 2016
  • 본 논문에서는 word2vec과 doc2vec을 함께 CNN에 적용한 문서 분류 방안을 제안한다. 먼저 어절, 형태소, WPM(Word Piece Model)을 각각 사용하여 생성한 토큰(token)으로 doc2vec을 활용하여 문서를 vector로 표현한 후, 초보적인 문서 분류에 적용한 결과 WPM이 분류율 79.5%가 되어 3가지 방법 중 최고 성능을 보였다. 다음으로 CNN의 입력자질로써 WPM을 이용하여 생성한 토큰을 활용한 word2vec을 범주 10개의 문서 분류에 사용한 실험과 doc2vec을 함께 사용한 실험을 수행하였다. 실험 결과 word2vec만을 활용하였을 때 86.89%의 분류율을 얻었고, doc2vec을 함께 적용한 결과 89.51%의 분류율을 얻었다. 따라서 제안한 모델을 통해서 분류율이 2.62% 향상됨을 확인하였다.

  • PDF

Performance Analysis of Opinion Mining using Word2vec (Word2vec을 이용한 오피니언 마이닝 성과분석 연구)

  • Eo, Kyun Sun;Lee, Kun Chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • /
    • pp.7-8
    • /
    • 2018
  • This study proposes an analysis of the Word2vec-based machine learning classifiers for the sake of opinion mining tasks. As a bench-marking method, BOW (Bag-of-Words) was adopted. On the basis of utilizing the Word2vec and BOW as feature extraction methods, we applied Laptop and Restaurant dataset to LR, DT, SVM, RF classifiers. The results showed that the Word2vec feature extraction yields more improved performance.

  • PDF

Categorization of Korean News Articles Based on Convolutional Neural Network Using Doc2Vec and Word2Vec (Doc2Vec과 Word2Vec을 활용한 Convolutional Neural Network 기반 한국어 신문 기사 분류)

  • Kim, Dowoo;Koo, Myoung-Wan
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.742-747
    • /
    • 2017
  • In this paper, we propose a novel approach to improve the performance of the Convolutional Neural Network(CNN) word embedding model on top of word2vec with the result of performing like doc2vec in conducting a document classification task. The Word Piece Model(WPM) is empirically proven to outperform other tokenization methods such as the phrase unit, a part-of-speech tagger with substantial experimental evidence (classification rate: 79.5%). Further, we conducted an experiment to classify ten categories of news articles written in Korean by feeding words and document vectors generated by an application of WPM to the baseline and the proposed model. From the results of the experiment, we report the model we proposed showed a higher classification rate (89.88%) than its counterpart model (86.89%), achieving a 22.80% improvement. Throughout this research, it is demonstrated that applying doc2vec in the document classification task yields more effective results because doc2vec generates similar document vector representation for documents belonging to the same category.

Generating Korean Sentences Using Word2Vec (Word2Vec 모델을 활용한 한국어 문장 생성)

  • Nam, Hyun-Gyu;Lee, Young-Seok
    • Annual Conference on Human and Language Technology
    • /
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Generating Korean Sentences Using Word2Vec (Word2Vec 모델을 활용한 한국어 문장 생성)

  • Nam, Hyun-Gyu;Lee, Young-Seok
    • 한국어정보학회:학술대회논문집
    • /
    • /
    • pp.209-212
    • /
    • 2017
  • 고도화된 머신러닝과 딥러닝 기술은 영상처리, 자연어처리 등의 분야에서 많은 문제를 해결하고 있다. 특히 사용자가 입력한 문장을 분석하고 그에 따른 문장을 생성하는 자연어처리 기술은 기계 번역, 자동 요약, 자동 오류 수정 등에 널리 이용되고 있다. 딥러닝 기반의 자연어처리 기술은 학습을 위해 여러 계층의 신경망을 구성하여 단어 간 의존 관계와 문장 구조를 학습한다. 그러나 학습 과정에서의 계산양이 방대하여 모델을 구성하는데 시간과 비용이 많이 필요하다. 그러나 Word2Vec 모델은 신경망과 유사하게 학습하면서도 선형 구조를 가지고 있어 딥러닝 기반 자연어처리 기술에 비해 적은 시간 복잡도로 고차원의 단어 벡터를 계산할 수 있다. 따라서 본 논문에서는 Word2Vec 모델을 활용하여 한국어 문장을 생성하는 방법을 제시하였다. 본 논문에서는 지정된 문장 템플릿에 유사도가 높은 각 단어들을 적용하여 문장을 구성하는 Word2Vec 모델을 설계하였고, 서로 다른 학습 데이터로부터 생성된 문장을 평가하고 제안한 모델의 활용 방안을 제시하였다.

  • PDF

Effective Korean sentiment classification method using word2vec and ensemble classifier (Word2vec과 앙상블 분류기를 사용한 효율적 한국어 감성 분류 방안)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Contents Society
    • /
    • v.19 no.1
    • /
    • pp.133-140
    • /
    • 2018
  • Accurate sentiment classification is an important research topic in sentiment analysis. This study suggests an efficient classification method of Korean sentiment using word2vec and ensemble methods which have been recently studied variously. For the 200,000 Korean movie review texts, we generate a POS-based BOW feature and a feature using word2vec, and integrated features of two feature representation. We used a single classifier of Logistic Regression, Decision Tree, Naive Bayes, and Support Vector Machine and an ensemble classifier of Adaptive Boost, Bagging, Gradient Boosting, and Random Forest for sentiment classification. As a result of this study, the integrated feature representation composed of BOW feature including adjective and adverb and word2vec feature showed the highest sentiment classification accuracy. Empirical results show that SVM, a single classifier, has the highest performance but ensemble classifiers show similar or slightly lower performance than the single classifier.

A Study on the Accuracy Improvement of Movie Recommender System Using Word2Vec and Ensemble Convolutional Neural Networks (Word2Vec과 앙상블 합성곱 신경망을 활용한 영화추천 시스템의 정확도 개선에 관한 연구)

  • Kang, Boo-Sik
    • Journal of Digital Convergence
    • /
    • v.17 no.1
    • /
    • pp.123-130
    • /
    • 2019
  • One of the most commonly used methods of web recommendation techniques is collaborative filtering. Many studies on collaborative filtering have suggested ways to improve accuracy. This study proposes a method of movie recommendation using Word2Vec and an ensemble convolutional neural networks. First, in the user, movie, and rating information, construct the user sentences and movie sentences. It inputs user sentences and movie sentences into Word2Vec to obtain user vectors and movie vectors. User vectors are entered into user convolution model and movie vectors are input to movie convolution model. The user and the movie convolution models are linked to a fully connected neural network model. Finally, the output layer of the fully connected neural network outputs forecasts of user movie ratings. Experimentation results showed that the accuracy of the technique proposed in this study accuracy of conventional collaborative filtering techniques was improved compared to those of conventional collaborative filtering technique and the technique using Word2Vec and deep neural networks proposed in a similar study.