• Title, Summary, Keyword: a parabolic differential equation

Search Result 34, Processing Time 0.041 seconds

Model Reference Adaptive Control of a Time-Varying Parabolic System

  • Hong, Keum-Shik;Yang, Kyung-Jinn;Kang, Dong-Hunn
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.168-176
    • /
    • 2000
  • Related to the error dynamics of an adaptive system, averaging theorems are developed for coupled differential equations which consist of ordinary differential equations and a parabolic partial differential equation. The results are then applied to the convergence analysis of the parameter estimate errors in the model reference adaptive control of a nonautonomous parabolic partial differential equation with lowly time-varying parameters.

  • PDF

NEGATIVELY BOUNDED SOLUTIONS FOR A PARABOLIC PARTIAL DIFFERENTIAL EQUATION

  • FANG ZHONG BO;KWAK, MIN-KYU
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.829-836
    • /
    • 2005
  • In this note, we introduce a new proof of the unique-ness and existence of a negatively bounded solution for a parabolic partial differential equation. The uniqueness in particular implies the finiteness of the Fourier spanning dimension of the global attractor and the existence allows a construction of an inertial manifold.

A GLOBALITY OF A HOPF BIFURCATION IN A FREE BOUNDARY PROBLEM

  • Ham, Yoon-Mee
    • Journal of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.395-405
    • /
    • 1997
  • A globality of the Hopf bifurcation in a free boundary problem for a parabolic partial differential equation is investigated in this paper. We shall examine the global behavior of the Hopf critical eigenvalues and and apply the center-index theory to show the globality.

  • PDF

SUPERCONVERGENCE OF FINITE ELEMENT METHODS FOR LINEAR QUASI-PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS

  • Li, Qian;Shen, Wanfang;Jian, Jinfeng
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.8 no.2
    • /
    • pp.23-38
    • /
    • 2004
  • We consider finite element methods applied to a class of quasi parabolic integro-differential equations in $R^d$. Global strong superconvergence, which only requires that partitions are quasi-uniform, is investigated for the error between the approximate solution and the Sobolev-Volterra projection of the exact solution. Two order superconvergence results are demonstrated in $W^{1,p}(\Omega)\;and\;L_p(\Omega)$, for $2\;{\leq}p\;<\;{\infty}$.

  • PDF

Post-buckling Behavior of Tapered Columns under a Combined Load using Differential Transformation

  • Yoo, Yeong Chan
    • Architectural research
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 2006
  • In this research, the analysis of post-buckling behavior of tapered columns has been performed under a combined load of uniformly distributed axial load along the length and concentric axial load at free end by solving the nonlinear differential equation with the differential transformation technique. The buckling load at various slopes at free end of column is calculated and the results of the analysis using the differential transformation technique is verified with those of previous studies. It is also shown through the results that the buckling load of sinusoidal tapered columns is largest, the linear is second largest, and the parabolic is small in the all ranges of slopes at free end and the deflection of parabolic tapered columns in the x coordinates is largest, the sinusoidal is second largest, and the linear is smallest in the range of slope 0 to 140 degrees at free end. However, when the range of the slope is 160 to 176 degrees at the free end, the deflection of sinusoidal tapered columns in the x coordinates is largest, the linear is second largest, and the parabolic is smallest. In addition, for the linear tapered column, the buckling load increases along with the flexural stiffness ratio. Also, for the parabolic and the sinusoidal tapered column, the buckling loads increase and decrease as the flexural ratios increase in the range of flexural stiffness ratio n = 1.0 to n = 2.0. Through this research, it is verified that the differential transformation technique can be applied to solve the nonlinear differential equation problems, such as analysis of post-buckling behavior of tapered columns. It is also expected that the differential transformation technique apply to various more complicated problems in future.

TIME DISCRETIZATION WITH SPATIAL COLLOCATION METHOD FOR A PARABOLIC INTEGRO-DIFFERENTIAL EQUATION WITH A WEAKLY SINGULAR KERNEL

  • Kim Chang-Ho
    • The Pure and Applied Mathematics
    • /
    • v.13 no.1
    • /
    • pp.19-38
    • /
    • 2006
  • We analyze the spectral collocation approximation for a parabolic partial integrodifferential equations(PIDE) with a weakly singular kernel. The space discretization is based on the spectral collocation method and the time discretization is based on Crank-Nicolson scheme with a graded mesh. We obtain the stability and second order convergence result for fully discrete scheme.

  • PDF

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • Honam Mathematical Journal
    • /
    • v.37 no.3
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.

Stability Improved Split-step Parabolic Equation Model

  • Kim, Tae-Hyun;Seong, Woojae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3E
    • /
    • pp.105-111
    • /
    • 2002
  • The parabolic equation technique provides an excellent model to describe the wave phenomena when there exists a predominant direction of propagation. The model handles the square root wave number operator in paraxial direction. Realization of the pseudo-differential square root operator is the essential part of the parabolic equation method for its numerical accuracy. The wide-angled approximation of the operator is made based on the Pade series expansion, where the branch line rotation scheme can be combined with the original Pade approximation to stabilize its computational performance for complex modes. The Galerkin integration has been employed to discretize the depth-dependent operator. The benchmark tests involving the half-infinite space, the range independent and dependent environment will validate the implemented numerical model.

EVOLUTION EQUATIONS ON A RIEMANNIAN MANIFOLD WITH A LOWER RICCI CURVATURE BOUND

  • Chang, Jeongwook
    • East Asian mathematical journal
    • /
    • v.30 no.1
    • /
    • pp.79-91
    • /
    • 2014
  • We consider the parabolic evolution differential equation such as heat equation and porus-medium equation on a Riemannian manifold M whose Ricci curvature is bounded below by $-(n-1)k^2$ and bounded below by 0 on some amount of M. We derive some bounds of differential quantities for a positive solution and some inequalities which resemble Harnack inequalities.