• Title, Summary, Keyword: abutment

Search Result 900, Processing Time 0.038 seconds

THE EFFECTS OF THE DESIGN OF ABUTMENT SCREW DRIVER ON THE AMOUNT OF TIME FOR INSERTION OF SCREW DRIVER INTO ABUTMENT SCREW HEAD (임플랜트 지대주 나사와 드라이버의 설계가 보철물 장착 및 철거 시간에 미치는 영향에 관한 연구)

  • Kim Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.258-263
    • /
    • 2005
  • Statement of problem. Implant screw loosening has been remained a problem in implant prosthodontics. The time needed to insert screw driver into abutment screw head should be shortened for the purpose of decreasing the chair time. Purpose. The purpose of this study was to investigate the effects of the design of abutment screw driver on the amount of time for insertion of screw driver into abutment screw head. Material and methods. Hexagonal and rectangular types of abutment screw drivers were used. The original abutment screw drivers were modified by grinding acute angle of the screw driver tip (modified drivers). Group 1 : hexagonal type abutment screw and original driver Group 2 : hexagonal type abutment screw and modified driver Group 3 : rectangular type abutment screw and original driver Group 4 : rectangular type abutment screw and modified driver UCLA lab analogues were located in acrylic resin block. The angulations of them were 0 and 20 degrees. The times needed for insertion were measured. Group 1 and 3 were used as controls. Results. 1. Group 2 showed shorter insertion time than group 1, regardless of implant angulations (p<.05). 2. Group 4 showed shorter insertion time than group 3, regardless of implant angulations (p<.05). Conclusion. Modified abutment screw drivers required less amount of time to insert screw driver into abutment screw head. Modification of abutment screw driver was beneficial.

Evaluation of abutment types on highway in terms on driving comfort

  • Nam, Moon S.;Park, Min-Cheol;Do, Jong-Nam
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.43-61
    • /
    • 2017
  • The inverted T-type abutments are generally used in highway bridges constructed in Korea. This type of abutment is used because it has greater stability, with more pile foundations embedded in the bedrock, while simultaneously providing support for lateral earth pressure and vertical loads of superstructures. However, the cross section of inverted T-type abutments is large compared with the piers, which makes them more expensive. In addition, a differential settlement between the abutment and embankment, as well as the expansion joints, causes driving discomfort. This study evaluated the driving comfort of several types of abutments to improve driving comfort on the abutment. To achieve this objective, a traditional T-type abutment and three types of candidate abutments, namely, mechanically stabilized earth wall (MSEW) abutment supported by a shallow foundation (called "true MSEW abutment"), MSEW abutment supported by piles (called "mixed MSEW abutment"), and pile bent and integral abutment with MSEW (called "MIP abutment"), were selected to consider their design and economic feasibility. Finite element analysis was performed using the design section of the candidate abutments. Subsequently, the settlements of each candidate abutment, approach slabs, and paved surfaces of the bridges were reviewed. Finally, the driving comfort on each candidate abutment was evaluated using a vehicle dynamic simulation. The true MSEW abutment demonstrated the most excellent driving comfort. However, this abutment can cause problems with respect to serviceability and maintenance due to excessive settlements. After our overall review, we determined that the mixed MSEW and the MIP abutments are the most appropriate abutment types to improve driving comfort by taking the highway conditions in Korea into consideration.

DETORQUE FORCE OF TiN-COATED ABUTMENT SCREW WITH VARIOUS COATING THICKNESS AFTER REPEATED CLOSING AND OPENING

  • Kim, Han-Su;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.769-779
    • /
    • 2007
  • Statement of problem. When TiN coating is applied to the abutment screw, occurrence of greater preload and prevention of the screw loosening could be expected due to decrease of frictional resistance. However, the proper thickness of TiN coating on abutment screw has not been yet reported. Purpose. The purpose of this study is to find out the appropriate TiN coating thickness by evaluating the detorque force and the surface change of titanium abutment screw with various TiN coating thickness. Material and methods. 1. Material Thirty five non-coated abutment screws were prepared for TiN coating. TiN coatings were prepared by Arc ion plating method. Depending on the coating deposition time(CDT), experimental groups were divided into 6 groups(CDT 30min, 60min, 90min, 120min, 150min, 180min) and those of 1 group was not coated as a control group. Each group was made up of 5 abutment screws. 2. Methods FE-SEM(Field Emission Scanning Electron Microscoper) and EDX(Energy Dispersive X-ray Spectroscopy) were used to observe the surface of the abutment screw. Electric scales was used to measure the weight of the abutment screw after the repeated closing and opening of 10 trials. Detorque force was measured with digital torque gauge, at each trial. Results. 1. As the coating deposition time increased, the surface became more consistent and smooth. 2. As for the abutment screws that were TiN coated for more than 60 minutes, no surface change was found after the repeated closing and opening. 3. The TiN coated abutment screws showed less weight change than the non-coated abutment screws. 4. The TiN coated abutment screws showed higher mean detorque force than the noncoated abutment screws. 5. The abutment screw coated for 60 minutes showed the highest mean detorque force. Conclusion. The coating layer of proper thickness is demanded to obtain consistent and smooth coating surface, resistance to wear, and increased detorque force of the abutment screw. In conclusion, the coating deposition time of 60 minutes indicated improved mechanical property, when TiN coating was conducted on titanium abutment screw.

SURFACE CHANGE AND FIT OF TIN-COATED ABUTMENT SCREW AFTER REPEATED CLOSING AND OPENING (TiN 코팅된 지대주 나사의 반복 착탈 후 표면 변화와 적합도에 관한 연구)

  • Kim, Jong-Nam;Chung, Chae-Heon;Kim, Hee-Jung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.119-130
    • /
    • 2007
  • Statement of problem: A few dry lubricants were applied to abutment screws for the improvement of joint stability. Purpose: The purpose of this study was to evaluate the surface change and fit of TiN-Coated abutment screw through the examination of tested screws in the field emission scanning electron microscope(FE-SEM;Netherland, Phillips co., model:XL 30 SFEG) after repeated closing and opening. Materials and method: Titanium(3i/implant Innovations Inc, USA) and Gold-Tite abutment screws(3i/implant Innovations Inc, USA) were selected for Group A and C respectively. TiN coated titanium abutment screws were also divided into two groups, Group B and D. Abutment screws of each group and the fit of abutment screw/implant fixture/abutment were observed on FE-SEM after repeated closing and opening test respectively. Results: 1. The abutment screws of TiN coated groups(Group B and D) showed more remarkable wear resistance in the threads of the screw than those of the other group(Group A and C). 2. There were more severe wear and defect of TiN coating in Group D tightened to 32 Ncm than Group B to 20 Ncm. 3. There was no difference in the fit of abutment screw/fixture/abutment among four groups, Group A, Group B, Group C and Group D. Conclusion: Under the conditions of this study, it is suggested that TiN coating of abutment screw be clinically acceptable and be expected to reduce the risk of abutment screw loosening. TiN coating of abutment screw showed good resistance against wear and the adequate fit of abutment screw/implant fixture/abutment.

ANALYSIS OF STRESS DEVELOPED WITHIN THE SUPPORTING TISSUE OF ABUTMENT TOOTH WITH INDIRECT RETAINER ACCORDING TO VARIOUS DESIGNS OF DIRECT RETAINER AND DECREE OF BONE RESORPTION (편측성 후방연장 국소의치에서 직접유지장치의 설계와 지대치 골흡수에 따른 간접유지장치 지대치 주위조직에 발생하는 응력분석)

  • Lee, Suk-Hyun;Lee, Cheong-Hee;Jo, Kwang-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.36 no.1
    • /
    • pp.150-165
    • /
    • 1998
  • For the purpose of evaluating the effect of both direct retainer design and bony absorption degree around abutment of indirect retainer on the supporting tissue of abutment of indirect retainer, dislodging force was transmitted to unilateral distal extension RPD bases. Analysis of stress distributed within the supporting tissue around abutment of indirect retainer was carried out. Using three-dimensional photoelastic stress analysis method and the conclusion is a follows. 1. According to the extent of force which the direct retainer of the most distal abutment tooth, the amount of force transmitted to the abutment tooth of indirect retainer was small. 2. Of all the cases, Mandibular first premolar which was used abutment tooth of indirect retainer, buccal, mesial and distal sides represented compression stress and lingual side represented tensile stress. 3. The more bone resorption of abutment tooth of indirect retainer, the more distortion of buccal and distal side of abutment tooth was existed and the extent of compression stress which was existed and distal side to abutment tooth was large. 4. When the alveolar bone around the abutment with indircet retainer is normal. The amount of force transmitted on abutment with indirect retainer was small in the order of Akers clasp, RPA clasp, RPI clasp. 5. When the alveolar bone around the abutment with indirect retainer has been absorbed 20% and 30%, the amount of force transmitted on abutment with indirect retainer was small in the order of RPA calsp, RPI clasp, Akers clasp. 6. When denture is displaced, shape of the direct retainer reciprocating abutment affect much the function of indirect retainer.

  • PDF

A comparative study on the fit and screw joint stability of ready-made abutment and CAD-CAM custom-made abutment (기성 지대주와 맞춤형 CAD-CAM 지대주의 적합 및 나사 안정성 비교)

  • Kim, Jong-Wook;Heo, Yu-Ri;Kim, Hee-Jung;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.51 no.4
    • /
    • pp.276-283
    • /
    • 2013
  • Purpose: The purpose of this study was to investigate the fit and screw joint stability between Ready-made abutment and CAD-CAM custom-made abutment. Materials and methods: Osstem implant system was used. Ready-made abutment (Transfer abutment, Osstem Implant Co. Ltd, Busan, Korea), CAD-CAM custom-made abutment (CustomFit abutment, Osstem Implant Co. Ltd, Busan, Korea) and domestically manufactured CAD-CAM custom-made abutment (Myplant, Raphabio Co., Seoul, Korea) were fabricated five each and screws were provided by each company. Fixture and abutments were tightening with 30Ncm according to the manufacturer's instruction and then preloding reverse torque values were measured 3 times repeatedly. Kruskal-Wallis test was used for statistical analysis of the preloading reverse torque values (${\alpha}=.05$). After specimens were embedded into epoxy resin, wet cutting and polishing was performed and FE-SEM imaging was performed, on the contact interface. Results: The pre-loading reverse torque values were $26.0{\pm}0.30Ncm$ (ready-made abutment; Transfer abutment) and $26.3{\pm}0.32Ncm$ (CAD-CAM custom-made abutment; CustomFit abutment) and $24.7{\pm}0.67Ncm$ (CAD-CAM custom-made abutment; Myplant). The domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) presented lower pre-loading reverse torque value with statistically significant difference than that of the ready-made abutment (Transfer abutment) and CAD-CAM custom-made abutment (CustomFit abutment) manufactured from the same company (P=.027) and showed marginal gap in the fixture-abutment interface. Conclusion: Within the limitation of the present in-vitro study, in domestically manufactured CAD-CAM custom-made abutment (Myplant abutment) showed lower screw joint stability and fitness between fixture and abutment.

A Study on Pullout Stability according to Abutment Shape of True Mechanicaaly Stabilized Earth Wall Abutment (순수형 보강토교대의 교대 형상에 따른 인발 안정성 검토)

  • Shin, Keun-Sik;Han, Heui-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.594-601
    • /
    • 2019
  • A true MSEW abutment is an abutment type that directly supports the load of a superstructure. Metal strips, which are in-extensile reinforcements, should be used to minimize abutment deformation. A study to derive the application conditions of a True MSEW abutment was carried out by Zevogolis(2007). As a result, the pullout factor of safety of the uppermost reinforcement was estimated to be the smallest. Therefore, the pullout factor of safety of the uppermost reinforcement is the most important design factor. Parameter analysis was conducted with the abutment length, abutment heel, and abutment height as variables. The pullout factor of safety increased with increasing abutment length and abutment heel length. This is because the contact area increases and the superstructure is dispersed as the abutment length and abutment heel length increase. The pullout factor of safety converges at an abutment length of 1.2m and an abutment heel length of 0.9m. This is because the effective length of the reinforcement is reduced due to the increase in contact area. On the other hand, the extension of the superstructure will increase if the abutment length and abutment heel length are increased excessively. In addition, earth-volume is increased if the abutment height increases excessively. This acts as an upper load on the MSE wall. Therefore, it needs to be examined carefully.

Evaluation of the effect of abutment preparation angles on the repeatability and reproducibility using a blue light model scanner

  • Kim, Dong-Yeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.210-217
    • /
    • 2020
  • PURPOSE. The purpose of the study is to evaluate the repeatability and reproducibility of the abutment angle using a blue light scanner. MATERIALS AND METHODS. 0°, 6°, and 10° wax cast abutment dies were fabricated. Each of the silicone impression was produced using the replicable silicone. Each study die was constructed from the prepared replicable stone used for scans. 3-dimensional data was obtained after scanning the prepared study dies for the repeatability by using the blue light scanner. The prepared 3-dimensional data could have the best fit alignment using 3-dimensional software. For reproducibility, each abutment was used as the first reference study die, and then it was scanned five times per each. 3-dimensional software was used to perform the best fit alignment. The data obtained were analyzed using a nonparametric Kruskal-Wallis H test (α=.05), post hoc Mann-Whitney U test, and Bonferroni correction (α=.017). RESULTS. The repeatability of 0°, 6°, and 10° abutments was 3.9, 4.4 and 4.7 ㎛, respectively. Among them, the 0° abutment had the best value while the 10° abutment showed the worst value. There was a statistically significant difference (P<.05). The reproducibility of 0°, 6°, and 10° abutments was 6.1, 5.5, and 5.3 ㎛, respectively. While the 10° abutment showed the best value, the 0° abutment showed the worst value. However, there was no statistically significant difference (P>.05). CONCLUSION. In repeatability, the 0° abutment showed a positive result. In reproducibility, the 10° abutment achieved a positive result.

THE EFFECTS OF FABRICATION OF GOLD CYLINDER AND ABUTMENT ON THE FITNESS AND PRELOAD OF THE PROSTHESIS (지대주와 금속 실린더의 종류가 보철물의 적합도 및 preload에 미치는 영향)

  • Ha Jum-Im;Jeong Hoe-Yeol;Kim Yu-Lee;Cho Hye-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.451-465
    • /
    • 2003
  • Statement of problem : Recently various implant components such as premachined gold cylinder, plastic cylinder gold UCLA abutment and plastic abutment were developed and used clinically without clinical investigation. Purpose : The purpose of this study was to evaluate the effects of fabrication of gold cylinder on the fitness and preload of the standard abutment and also the effects of fabrication of UCLA gold abutment on the fitness and stress transfer around the implant fixture. Material and method : Three kinds of gold cylinders such as, as-received gold cylinder (Nobel Biocare, Sweden), gold cylinder after casting, and plastic cylinder after casting with type IV gold alloy were tested over the top of the standard abutment. At the same time, three types of abutments such as, gold UCLA abutment before and after casting, and plastic abutment after casting were tested. The cylinder and abutment was secured over the fixture with conventional pre-load values using an electronic torque controller (Nobel Biocare, Sweden). The fitness of the abutment on the fixture and gold cylinder over the standard abutment were measured using the microhardness tester (MXT 70, Matsuzawa, Japan). Preload and the strain values were recorded using the strain balance unit (SB-10, Measurement group, Raleigh, USA) and strain indicator (P-3500, Measurement group, Raleigh, USA) systems. Results and conclusion : 1. Significant differences were found in the fit between the gold cylinder and plastic cylinder. 2 There were significant differences between the preload of the gold cylinder and that of the plastic cylinder. 3. Significant differences were found in the fit between the gold UCLA abutment and plastic UCLA abutment. 4. There were no significant differences in the stress generated on the supporting structure of the fixture among different cylinder and abutment groups.

Effect of different abutment height and convergence taper on the retention of crowns cemented onto implant-supported prostheses (시멘트 유지형 임플란트 지대주의 높이와 축면경사도가 보철물의 유지력에 미치는 영향)

  • Byun, Tae-Hee;Kim, Bu-Sob;Chung, In-Sung
    • The Journal of Korean Academy of Dental Technology
    • /
    • v.30 no.1
    • /
    • pp.57-63
    • /
    • 2008
  • The purpose of this study was to ascertain the effect of different abutment height and different taper of abutment on retention force of cemented implant-supported prostheses. Test specimens consisted of different abutment height group(3mm, 4mm, 5mm, 6mm, 7mm) and different taper(degrees) abutment group($4^{\circ},\;5^{\circ},\;6^{\circ},\;7^{\circ},\;8^{\circ}$). The surfaces of abutments and crowns were manufactured and finished by automatic lathe(CNC). Luting cement(Tokuso Ionomer) was prepared according to the manufacturer's instruction. And the cylinders were sealed onto the abutments and loaded in compression at 5kg for 10minutes. Excess cement was removed from the abutment-cylinder junction and the specimens were stored at room temparature for 24 hours. Specimens were tested in tension using a universal testing machine. Within the limits of this study, the following conclusions were drawn: 1. The increase in abutment height result in improvement in retention strength(P<0.05). 2. The increase in taper of abutment result in decrease in retention strength(P<0.05). 3. The decrease in abutment height result in decrease in retention strength, besides has a significantly lower retention strength at 3mm abutment height. 4. The increase in taper of abutment result in decrease in retention strength, besides has a significantly lower retention strength at $7^{\circ}$ abutment.

  • PDF