• Title, Summary, Keyword: acetic acid fermentation

Search Result 566, Processing Time 0.037 seconds

Optimization of Acetic Acid Fermentation for Producing Vinegar from Extract of Jujube (Zizyphus jujuba Mill.) Fruits (대추 식초 음료 생산을 위한 대추 추출액 발효 조건 최적화)

  • Jo, Youngje;Han, Jung Woo;Min, Dul-Lae;Lee, Young Eun;Choi, Young-Jin;Lim, Seokwon
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.711-718
    • /
    • 2015
  • The optimum conditions for producing vinegar from Jujube (ziziphus jujuba) juice using Acetobacter aceti were exploited by employing the response surface methodology (RSM). In addition to the initial concentration of ethanol, which is known to be a significant factor affecting acetic acid fermentation, the effects of initial concentration of Jujube juice, A. aceti concentration, pH, and temperature on acetic acid fermentation were also investigated. Out of these factors, the effects of the initial concentration of jujube juice and inoculation amount of A. aceti were determined to be negligible based on statistical analysis. By employing the face-centered experimental design in RSM, the optimum conditions for acetic acid fermentation were exploited for achieving maximum acidity and acetic acid production. The coefficients ($R^2$) of the derived equations from the response surface regression were 0.71 and 0.78 for acidity and acetic acid production, respectively. The maximum production of acetic acid was expected to be 52.76 mg/mL from 25% jujube extract at $21.75^{\circ}C$ with 7.69% alcohol content.

Production of lactic acid by Lactobacillus paracasei isolated from button mushroom bed

  • Kim, Sun-Joong;Seo, Hye-Kyung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.187-193
    • /
    • 2013
  • A galactose fermentation bacterium producing lactose from red seaweed, which was known well to compromise the galactose as main reducing sugar, was isolated from button mushroom bed in Buyeo-Gun, Chungchugnamdo province. The lactic acid bacteria MONGB-2 was identified as Lactobacillus paracasei subsp. tolerans by analysis of 16S rRNA gene sequence. When the production of lactic acid and acetic acid by L. paracasei MONGB-2 was investigated by HPLC analysis with various carbohydrates, the strain MONGB-2 efficiently convert the glucose and galactose to lactic acid with the yield of 18.86 g/L and 18.23 g/L, respectively and the ratio of lactic acid to total organic acids was 1.0 and 0.91 g/g for both substrates. However, in the case of acetic acid fermentation, other carbohydrates besides galactose and red seaweed hydrolysate could not be totally utilized as carbon sources for acetic acid production by the strain. The lactic acid production from glucose and galactose in the fermentation time courses was gradually enhanced upto 60 h fermentation and the maximal concentration reached to be 16-18 g/L from both substrates after 48 h of fermentation. The initial concentration of glucose and galactose were completely consumed within 36 h of fermentation, of which the growth of cell also was maximum level. In addition, the bioconversion of lactic acid from the red seaweed hydrolysate by L. paracasei MONGB-2 appeared to be about 20% levels of the initial substrates concentration and this results were entirely lower than those of galactose and glucose showed about 60% of conversion. The apparent results showed that L. paracasei MONGB-2 could produce the lactic acid with glucose as well as galactose by the homofermentation through EMP pathway.

Vinegar Production from subtropical Fruits (난지과실을 이용한 식초제조)

  • 김동한;이정성
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.1
    • /
    • pp.68-75
    • /
    • 2000
  • Optimum processing conditions for vinegar fermentation using fig, pear and persimmon were determined. Alcohol contents in the fermentatio broth of crushed fruits of fig, pear and persimmon were 7.5%, 5.1% and 6.8%, respectively. Alcohol contents increased up to 14.3~15.1% by adding 24% of sugar to the fruit juices. The total acidity of 7.04%, 3.30% and 3.66% were obtained for fig, pear and persimmon, respectively, through acetic acid fermentation of fruit juices containing 8% ethanol. Acetic acid yield increased by shaking during fermentation for pear and persimmon broth. Acetic acid yield increased 1.80~1.92 times by adding 0.5% of yeast extract to the fermentation broth of pear and persimmon. After fermentation, each fruit vinegar was clarified up to 93.1~97.4 of light transmittance by using 0.6% of kaki shibu for 4 days at 1$0^{\circ}C$. After aging for 60 days at 1$0^{\circ}C$, the acidity of fruit vinegar decreased slightly. Tannin content of persimmon vineger was remarkably higher than the other, while light absorbance of pear vinegar was higher than the other vinegars. Acetic acid was identified as the main volatile organic acid in the fruit vinegars, while propionic, isobutyric and isovaleric acids were identified as the minors. The content of non-volatile organic acids in the pear vinegar was higher than that in the persimmon vinegar. Sensory evaluation results indicate that the fig vinegar was preferred to the pear vinegar in the aspects of color, flavor and overall acceptability, but the fig vinegar had a strong background taste. Sensory scores of the persimmon vinegar increased significantly by pasteurization, but those of the fig and pear vinegars did not by pasteurization.

  • PDF

Production of High Acetic Acid Vinegar by Single Stage Fed-Batch Culture (1단계 유가식 배양에 의한 고산도 식초 생산)

  • 이영철;박민선;김형찬;박기범;유익제;안인구;손세형
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.5
    • /
    • pp.511-512
    • /
    • 1993
  • The production of vinegar containing high acetic acid concentration was carried in a single stage fed-batch culture. The initial and residual ethanol concentration were 50.0g/l and 5.0g/l, respectively, and the ethanol concentration was maintained from 5.0g/l to 10.0g/l during fedbatch culture. The fermentation temperature was decreased by 1C for every increase of 2.0% in acidity. The maximum productivity was 2.53g/l-hr and the acidity was 16.08% after 40 hours of acetic acid fermentation.

  • PDF

Analysis of pH Change and an Automatic pH Control with A New Function:On-Line Estimation of Acetic Acid

  • Jung, Yoon-Keun;Hur, Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.2 no.2
    • /
    • pp.69-72
    • /
    • 1997
  • The pH of microbial culture medium was calculated from equations of equilibrium, meterial balances for ionic components and electro-neutrality theory. Ammonium ion consumption and Acetic acid production are found out to be the major contributors for the alteration of the pH as well as the buffer capacity of the medium. By measuring the buffer capacity on-line, levels of acetic acid were estimated by a software sensor using pH signal in a fermentation process of E.coli growing in a minimal medium. The measured values of acetic acid showed good correlation to those of estimated by the software sensor.

  • PDF

Studies on the Production of Vinegar from Fig (무화과를 이용한 식초 제조에 관한 연구)

  • 김동한
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.1
    • /
    • pp.53-60
    • /
    • 1999
  • Possibility of utilization of fig as a source of vinegar was tested. Alcohol fermentation was conducted by inoculation of Saccharomyces bayanus into fig juice. After 5 days of fermentation at 27oC, fig wine with alcohol content of 13.6%. Then fig vinegar was produced by cultivation of Acetobacter sp. E which was isolated from fig vinegar. Optimum concentration of alcohol, starter content and fermentation temperature for the acid production were 8~9%, 5% and 27~30oC, respectively. More acetic acid was produced by adding 0.5% of yeast extract and 0.01% of Ca pantothenate. Adjustment pH of culture broth with acetic acid and shaking cultivation method were not effective in higher yield of acid production. Addition of sulfite up to 50 ppm did not inhibit for acetic acid fermentation. Addition of 1% bentonite or 1% kakishibu was more effective for the clarification of fig vinegar than any other clarifying agents tested. During aging and racking, acidity, absorbance and tannin content of fig vinegar decreased, while redness and yellowness increased. Aged and racked fig vinegar showed higher sensory score than non aged one in the aspects of color and overall acceptability.

  • PDF

Development and Metabolite Profiling of Elephant Garlic Vinegar

  • Kim, Jeong-Won;Jeong, Deokyeol;Lee, Youngsuk;Hahn, Dongyup;Nam, Ju-Ock;Lee, Won-Young;Hong, Dong-Hyuck;Kim, Soo Rin;Ha, Yu Shin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.50-58
    • /
    • 2018
  • Elephant garlic (Allium ampeloprasum var. ampeloprasum), which belongs to the Alliaceae family along with onion and garlic, has a flavor and shape similar to those of normal garlic but is not true garlic. Additionally, its properties are largely unknown, and its processing and product development have not been reported. In this study, we focused on using elephant garlic to produce a new type of vinegar, for which the market is rapidly growing because of its health benefits. First, we evaluated the effects of elephant garlic addition on acetic acid fermentation of rice wine by Acetobacter pasteurianus. In contrast to normal garlic, for which 2% (w/v) addition completely halted fermentation, addition of elephant garlic enabled slow but successful fermentation of ethanol to acetic acid. Metabolite analysis suggested that sulfur-containing volatile compounds were less abundant in elephant garlic than in normal garlic; these volatile compounds may be responsible for inhibiting acetic acid fermentation. After acetic acid fermentation, vinegar with elephant garlic did not have any sulfur-containing volatile compounds, which could positively contribute to the vinegar flavor. Moreover, the amino acid profile of the vinegar suggested that nutritional and sensory properties were more enhanced following addition of elephant garlic. Thus, elephant garlic may have applications in the development of a new vinegar product with improved flavor and quality and potential health benefits.

Metabolome Analysis and Aroma Characteristics of Fermented Fruit Vinegar (발효 과일식초의 대사체 분석 및 향기 특성)

  • Choi, Chan-Yeong;Park, Eun-Hee;Ryu, Su-Jin;Shin, Woo-Chang;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.4
    • /
    • pp.416-424
    • /
    • 2018
  • Vinegar was prepared from the fruits produced in Gangwon province, and major metabolite and aroma components were investigated for acetic acid fermentation. In the case of Meoru-Bokbunja vinegar, the ${\text\tiny{L}}$-alanine content was greatly changed by acetic acid fermentation. Acetic acid had the highest content (43%) of total aromatic components, and the contents of ester compounds, such as ethyl acetate and isoamyl acetate, were significantly increased after fermentation. Omija-Makgeolli vinegar produced linalool and hexanoic acid by fermentation, and terpenoid compound was prevalent (41.5%). ${\text\tiny{L}}$-alanine was also increased in Omija-Makgeolli vinegar, similar to that of Meoru-Bokbunja vinegar. Terpene compounds, such as terpinel-4-ol and ${\alpha}$-terpineol in Omija-Makgeolli vinegar, and ethyl acetate in Meoru-Bokbunja vinegar, were identified as major components in each aromatic formulation.

Changes in the Components of Persimmon Vinegars by Two Stages Fermentation (II) (2단계 발효에 의한 감식초의 성분 변화 (II))

  • 정용진;서지형;박난영;신승렬;김광수
    • Korean Journal of Food Preservation
    • /
    • v.6 no.2
    • /
    • pp.233-238
    • /
    • 1999
  • This study was determined changes of components of sweet and astringent persimmon vinegars by two stages fermentation. Free sugars of persimmon juices before alcohol fermentation were mainly composed of glucose, fructose and sucrose. The content of glucose, fructose and sucrose of sweet persimmon juice was 6.60, 6.12 and 1.74%, respectively, and those of astringent persimmon was 5.63, 5.21, 0.62%, respectively. The contents of free sugar decreased continuously during fermentation. Major organic acids of persimmon juices were acetic, galacturonic, malic, citric and ascorbic acid. Alcohols of persimmon juices was detected methanol, ethanol, iso-propylalcohol, n-propylalcohol and iso-butylalcohol at the initial fermentation. The contents of alcohols increased continuously up to 4days of fermentation but their contents except ethanol decreased slightly at 5th day of fermentation. Contents of free amino acid were higher in sweet persimmon than those in astringent persimmon. Volatile components increased during acetic acid fermentation.

  • PDF

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.